Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proof of Deep Learning: Approaches, Challenges, and Future Directions (2308.16730v1)

Published 31 Aug 2023 in cs.CR and cs.AI

Abstract: The rise of computational power has led to unprecedented performance gains for deep learning models. As more data becomes available and model architectures become more complex, the need for more computational power increases. On the other hand, since the introduction of Bitcoin as the first cryptocurrency and the establishment of the concept of blockchain as a distributed ledger, many variants and approaches have been proposed. However, many of them have one thing in common, which is the Proof of Work (PoW) consensus mechanism. PoW is mainly used to support the process of new block generation. While PoW has proven its robustness, its main drawback is that it requires a significant amount of processing power to maintain the security and integrity of the blockchain. This is due to applying brute force to solve a hashing puzzle. To utilize the computational power available in useful and meaningful work while keeping the blockchain secure, many techniques have been proposed, one of which is known as Proof of Deep Learning (PoDL). PoDL is a consensus mechanism that uses the process of training a deep learning model as proof of work to add new blocks to the blockchain. In this paper, we survey the various approaches for PoDL. We discuss the different types of PoDL algorithms, their advantages and disadvantages, and their potential applications. We also discuss the challenges of implementing PoDL and future research directions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mahmoud Salhab (5 papers)
  2. Khaleel Mershad (7 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.