Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

Gravity-induced entanglement between two massive microscopic particles in curved spacetime: I.The Schwarzschild background (2308.16526v2)

Published 31 Aug 2023 in gr-qc, astro-ph.CO, hep-th, and quant-ph

Abstract: The experiment involving the entanglement of two massive particles through gravitational fields has been devised to discern the quantum attributes of gravity. In this paper, we present a scheme to extend this experiment's applicability to more generalized curved spacetimes, with the objective of validating universal quantum gravity within broader contexts. Specifically, we direct our attention towards the quantum gravity induced entanglement of mass (QGEM) in astrophysical phenomena, such as particles traversing the interstellar medium. Notably, we ascertain that the gravitational field within curved spacetime can induce observable entanglement between particle pairs in both scenarios, even when dealing with particles significantly smaller than mesoscopic masses. Furthermore, we obtain the characteristic spectra of QGEM across diverse scenarios, shedding light on potential future experimental examinations. This approach not only establishes a more pronounced and extensive manifestation of the quantum influences of gravity compared to the original scheme but also opens avenues for prospective astronomical experiments. These experiments, aligned with our postulates, hold immense advantages and implications for the detection of quantum gravity and can be envisioned for future design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toroš, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim and G. Milburn, “Spin Entanglement Witness for Quantum Gravity,” Phys. Rev. Lett. 119, no.24, 240401 (2017) [arXiv:1707.06050 [quant-ph]].
  2. C. Marletto and V. Vedral, “Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity,” Phys. Rev. Lett. 119, no.24, 240402 (2017) [arXiv:1707.06036 [quant-ph]].
  3. M. Christodoulou and C. Rovelli, “On the possibility of laboratory evidence for quantum superposition of geometries,” Phys. Lett. B 792, 64-68 (2019) [arXiv:1808.05842 [gr-qc]].
  4. A. Capolupo, G. Lambiase, A. Quaranta and S. M. Giampaolo, “Probing axion mediated fermion–fermion interaction by means of entanglement,” Phys. Lett. B 804, 135407 (2020) [arXiv:1910.01533 [hep-ph]].
  5. A. Belenchia, R. M. Wald, F. Giacomini, E. Castro-Ruiz, Č. Brukner and M. Aspelmeyer, “Quantum Superposition of Massive Objects and the Quantization of Gravity,” Phys. Rev. D 98, no.12, 126009 (2018) [arXiv:1807.07015 [quant-ph]].
  6. D. Carney, P. C. E. Stamp and J. M. Taylor, “Tabletop experiments for quantum gravity: a user’s manual,” Class. Quant. Grav. 36, no.3, 034001 (2019) [arXiv:1807.11494 [quant-ph]].
  7. R. J. Marshman, A. Mazumdar and S. Bose, “Locality and entanglement in table-top testing of the quantum nature of linearized gravity,” Phys. Rev. A 101, no.5, 052110 (2020) [arXiv:1907.01568 [quant-ph]].
  8. L. Buoninfante, A. S. Koshelev, G. Lambiase and A. Mazumdar, “Classical properties of non-local, ghost- and singularity-free gravity,” JCAP 09, 034 (2018) [arXiv:1802.00399 [gr-qc]].
  9. T. Westphal, H. Hepach, J. Pfaff and M. Aspelmeyer, “Measurement of gravitational coupling between millimetre-sized masses,” Nature 591, no.7849, 225-228 (2021) [arXiv:2009.09546 [gr-qc]].
  10. M. Carlesso, A. Bassi, M. Paternostro and H. Ulbricht, “Testing the gravitational field generated by a quantum superposition,” New J. Phys. 21, no.9, 093052 (2019) [arXiv:1906.04513 [quant-ph]].
  11. D. L. Danielson, G. Satishchandran and R. M. Wald, “Gravitationally mediated entanglement: Newtonian field versus gravitons,” Phys. Rev. D 105, no.8, 086001 (2022) [arXiv:2112.10798 [quant-ph]].
  12. M. Christodoulou, A. Di Biagio, M. Aspelmeyer, Č. Brukner, C. Rovelli and R. Howl, “Locally Mediated Entanglement in Linearized Quantum Gravity,” Phys. Rev. Lett. 130, no.10, 100202 (2023) [arXiv:2202.03368 [quant-ph]].
  13. H. T. Cho and B. L. Hu, “Quantum noise of gravitons and stochastic force on geodesic separation,” Phys. Rev. D 105, no.8, 086004 (2022) [arXiv:2112.08174 [gr-qc]].
  14. A. Matsumura and K. Yamamoto, “Gravity-induced entanglement in optomechanical systems,” Phys. Rev. D 102, no.10, 106021 (2020) [arXiv:2010.05161 [gr-qc]].
  15. D. Miki, A. Matsumura and K. Yamamoto, “Entanglement and decoherence of massive particles due to gravity,” Phys. Rev. D 103, no.2, 026017 (2021) [arXiv:2010.05159 [gr-qc]].
  16. R. Howl, N. Cooper and L. Hackermüller, “Gravitationally-induced entanglement in cold atoms,” [arXiv:2304.00734 [quant-ph]].
  17. J. Yant and M. Blencowe, “Gravitationally induced entanglement in a harmonic trap,” Phys. Rev. D 107, no.10, 106018 (2023) [arXiv:2302.05463 [quant-ph]].
  18. S. Feng, B. M. Gu and F. W. Shu, “Detecting Extra Dimension By the Experiment of the Quantum Gravity Induced Entanglement of Masses,” [arXiv:2307.11391 [gr-qc]].
  19. M. Schut, A. Grinin, A. Dana, S. Bose, A. Geraci and A. Mazumdar, “Relaxation of experimental parameters in a Quantum-Gravity Induced Entanglement of Masses Protocol using electromagnetic screening,” [arXiv:2307.07536 [quant-ph]].
  20. P. Fragolino, M. Schut, M. Toroš, S. Bose and A. Mazumdar, “Decoherence of a matter-wave interferometer due to dipole-dipole interactions,” [arXiv:2307.07001 [quant-ph]].
  21. P. Li, Y. Ling and Z. Yu, “Generation rate of quantum gravity induced entanglement with multiple massive particles,” Phys. Rev. D 107, no.6, 064054 (2023) [arXiv:2210.17259 [gr-qc]].
  22. S. Bose, A. Mazumdar, M. Schut and M. Toroš, “Mechanism for the quantum natured gravitons to entangle masses,” Phys. Rev. D 105, no.10, 106028 (2022) [arXiv:2201.03583 [gr-qc]].
  23. F. He and B. Zhang, “Generation of entanglement between two laser pulses through gravitational interaction,” Eur. Phys. J. Plus 138, no.2, 141 (2023) [arXiv:2302.06362 [gr-qc]].
  24. F. Giacomini and Č. Brukner, “Einstein’s Equivalence principle for superpositions of gravitational fields and quantum reference frames,” [arXiv:2012.13754 [quant-ph]].
  25. A. Eliasdottir, M. Limousin, J. Richard, J. Hjorth, J. P. Kneib, P. Natarajan, K. Pedersen, E. Jullo and D. Paraficz, “Where is the matter in the Merging Cluster Abell 2218?,” [arXiv:0710.5636 [astro-ph]].
  26. A. B. Newman, T. Treu, R. S. Ellis, D. J. Sand, C. Nipoti, J. Richard and E. Jullo, “The Density Profiles of Massive, Relaxed Galaxy Clusters: I. The Total Density Over 3 Decades in Radius,” Astrophys. J. 765, 24 (2013) [arXiv:1209.1391 [astro-ph.CO]].
  27. J. F. Navarro, C. S. Frenk, S. D. M. White, “A universal density profile from hierarchical clustering,” Astrophys. J. 490:493 (1997).
  28. A. Matsumura, “Field-induced entanglement in spatially superposed objects,” Phys. Rev. D 104, no.4, 046001 (2021) [arXiv:2102.10792 [quant-ph]].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)