Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized polynomial functors (2308.16442v1)

Published 31 Aug 2023 in math.RT

Abstract: We define Schur categories, $\Gammad \mathcal C$, associated to a $\Bbbk$-linear category $\mathcal C$, over a commutative ring $\Bbbk$. The corresponding representation categories, $\mathbf{rep}\, \Gammad\mathcal C$, generalize categories of strict polynomial functors. Given a $\Bbbk$-superalgebra $A$, we show that for certain categories $\mathcal{V} = \boldsymbol{\mathcal V}_A$, $\boldsymbol{\mathcal E}_A$ of $A$-supermodules, there is a Morita equivalence between $\mathbf{rep}\, \Gammad\mathcal{V}$ and the category of supermodules over a generalized Schur superalgebra of the form $SA(m|n,d)$ and $SA(n,d)$, respectively. We also describe a formulation of generalized Schur-Weyl duality from the viewpoint of the category $\mathbf{rep}\, \Gammad \boldsymbol{\mathcal E}_A$.

Summary

We haven't generated a summary for this paper yet.