Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive Representation Learning Based on Multiple Node-centered Subgraphs (2308.16441v1)

Published 31 Aug 2023 in cs.AI

Abstract: As the basic element of graph-structured data, node has been recognized as the main object of study in graph representation learning. A single node intuitively has multiple node-centered subgraphs from the whole graph (e.g., one person in a social network has multiple social circles based on his different relationships). We study this intuition under the framework of graph contrastive learning, and propose a multiple node-centered subgraphs contrastive representation learning method to learn node representation on graphs in a self-supervised way. Specifically, we carefully design a series of node-centered regional subgraphs of the central node. Then, the mutual information between different subgraphs of the same node is maximized by contrastive loss. Experiments on various real-world datasets and different downstream tasks demonstrate that our model has achieved state-of-the-art results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.