Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Separate and Locate: Rethink the Text in Text-based Visual Question Answering (2308.16383v1)

Published 31 Aug 2023 in cs.CV and cs.MM

Abstract: Text-based Visual Question Answering (TextVQA) aims at answering questions about the text in images. Most works in this field focus on designing network structures or pre-training tasks. All these methods list the OCR texts in reading order (from left to right and top to bottom) to form a sequence, which is treated as a natural language ``sentence''. However, they ignore the fact that most OCR words in the TextVQA task do not have a semantical contextual relationship. In addition, these approaches use 1-D position embedding to construct the spatial relation between OCR tokens sequentially, which is not reasonable. The 1-D position embedding can only represent the left-right sequence relationship between words in a sentence, but not the complex spatial position relationship. To tackle these problems, we propose a novel method named Separate and Locate (SaL) that explores text contextual cues and designs spatial position embedding to construct spatial relations between OCR texts. Specifically, we propose a Text Semantic Separate (TSS) module that helps the model recognize whether words have semantic contextual relations. Then, we introduce a Spatial Circle Position (SCP) module that helps the model better construct and reason the spatial position relationships between OCR texts. Our SaL model outperforms the baseline model by 4.44% and 3.96% accuracy on TextVQA and ST-VQA datasets. Compared with the pre-training state-of-the-art method pre-trained on 64 million pre-training samples, our method, without any pre-training tasks, still achieves 2.68% and 2.52% accuracy improvement on TextVQA and ST-VQA. Our code and models will be released at https://github.com/fangbufang/SaL.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chengyang Fang (4 papers)
  2. Jiangnan Li (30 papers)
  3. Liang Li (297 papers)
  4. Can Ma (21 papers)
  5. Dayong Hu (4 papers)
Citations (11)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub