Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and $L^1$ terms (2308.16129v5)

Published 30 Aug 2023 in math.AP

Abstract: In this paper we deal with the following boundary value problem \begin{equation*} \begin{cases} -\Delta_{p}u + g(u) | \nabla u|{p} = h(u)f & \text{in $\Omega$,} \newline u\geq 0 & \text{in $\Omega$,} \newline u=0 & \text{on $\partial \Omega$,} \ \end{cases} \end{equation*} in a domain $\Omega \subset \mathbb{R}{N}$ $(N \geq 2)$, where $1\leq p<N $, $g$ is a positive and continuous function on $[0,\infty)$, and $h$ is a continuous function on $[0,\infty)$ (possibly blowing up at the origin). We show how the presence of regularizing terms $h$ and $g$ allows to prove existence of finite energy solutions for nonnegative data $f$ only belonging to $L1(\Omega)$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.