K$^{*}$(892)$^{\pm}$ resonance production in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV (2308.16119v2)
Abstract: The production of K$*$(892)$\pm$ meson resonance is measured at midrapidity ($|y|<0.5$) in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV using the ALICE detector at the LHC. The resonance is reconstructed via its hadronic decay channel K$*$(892)$\pm \rightarrow \rm{K0_S \pi\pm}$. The transverse momentum distributions are obtained for various centrality intervals in the $p_{\rm T}$ range of 0.4-16 GeV/$c$. The reported measurements of integrated yields, mean transverse momenta, and particle yield ratios are consistent with previous ALICE measurements for K$*$(892)$0$. The $p_{\rm T}$-integrated yield ratio 2K$*$(892)$\pm$/($\rm{K+ + K-}$) in central Pb-Pb collisions shows a significant suppression (9.3$\sigma$) relative to pp collisions. Thermal model calculations overpredict the particle yield ratio. Although both simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas MUSIC+SMASH tends to overpredict them. These observations, along with the kinetic freeze-out temperatures extracted from the yields of light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which increases towards central collisions. The $p_{\rm T}$-differential yield ratios 2K$*$(892)$\pm$/($\rm{K+ + K-}$) and 2K$*$(892)$\pm$/($\rm{\pi+ + \pi-}$) are suppressed by up to a factor of five at $p_{\rm T}<2$ GeV/$c$ in central Pb-Pb collisions compared to pp collisions at $\sqrt{s} =$ 5.02 TeV. Both particle ratios and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor shows a smooth evolution with centrality and is below unity at $p_{\rm T}>8$ GeV/$c$, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium.
- STAR Collaboration, K. H. Ackermann et al., “Elliptic flow in Au+Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 130 GeV”, Phys. Rev. Lett. 86 (2001) 402–407, arXiv:nucl-ex/0009011.
- STAR Collaboration, J. Adams et al., “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A 757 (2005) 102–183, arXiv:nucl-ex/0501009.
- STAR Collaboration, J. Adams et al., “Evidence from d+Au measurements for final state suppression of high pTsubscript𝑝Tp_{\rm{T}}italic_p start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT hadrons in Au+Au collisions at RHIC”, Phys. Rev. Lett. 91 (2003) 072304, arXiv:nucl-ex/0306024.
- STAR Collaboration, C. Adler et al., “Disappearance of back-to-back high pTsubscript𝑝Tp_{\rm{T}}italic_p start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT hadron correlations in central Au+Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett. 90 (2003) 082302, arXiv:nucl-ex/0210033.
- STAR Collaboration, J. Adams et al., “Particle type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett. 92 (2004) 052302, arXiv:nucl-ex/0306007.
- PHENIX Collaboration, K. Adcox et al., “Suppression of hadrons with large transverse momentum in central Au+Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 130 GeV”, Phys. Rev. Lett. 88 (2002) 022301, arXiv:nucl-ex/0109003.
- PHENIX Collaboration, K. Adcox et al., “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A 757 (2005) 184–283, arXiv:nucl-ex/0410003.
- BRAHMS Collaboration, I. Arsene et al., “Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment”, Nucl. Phys. A 757 (2005) 1–27, arXiv:nucl-ex/0410020.
- PHOBOS Collaboration, B. B. Back et al., “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A 757 (2005) 28–101, arXiv:nucl-ex/0410022.
- ALICE Collaboration, “The ALICE experiment – A journey through QCD”, arXiv:2211.04384 [nucl-ex].
- ALICE Collaboration, K. Aamodt et al., “Elliptic flow of charged particles in Pb–Pb collisions at 2.76 TeV”, Phys. Rev. Lett. 105 (2010) 252302, arXiv:1011.3914 [nucl-ex].
- ALICE Collaboration, K. Aamodt et al., “Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb–Pb Collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG= 2.76 TeV”, Phys. Lett. B 696 (2011) 30–39, arXiv:1012.1004 [nucl-ex].
- ALICE Collaboration, K. Aamodt et al., “Higher harmonic anisotropic flow measurements of charged particles in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 107 (2011) 032301, arXiv:1105.3865 [nucl-ex].
- U. W. Heinz, “The Strongly coupled quark-gluon plasma created at RHIC”, J. Phys. A 42 (2009) 214003, arXiv:0810.5529 [nucl-th].
- T. Niida and Y. Miake, “Signatures of QGP at RHIC and the LHC”, AAPPS Bull. 31 (2021) 12, arXiv:2104.11406 [nucl-ex].
- J. P. Blaizot and J.-Y. Ollitrault, “Equation of State and Hydrodynamics of Quark Gluon Plasmas”, Phys. Lett. B 191 (1987) 21–26.
- 2010. arXiv:0905.2433 [nucl-th].
- B. Schenke, S. Jeon, and C. Gale, “Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics”, Phys. Rev. Lett. 106 (2011) 042301, arXiv:1009.3244 [hep-ph].
- J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow”, Phys. Rev. D 46 (1992) 229–245.
- J. D. Bjorken, “Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region”, Phys. Rev. D 27 (1983) 140–151.
- D. Teaney, J. Lauret, and E. V. Shuryak, “Flow at the SPS and RHIC as a quark gluon plasma signature”, Phys. Rev. Lett. 86 (2001) 4783–4786, arXiv:nucl-th/0011058.
- A. Jaiswal and V. Roy, “Relativistic hydrodynamics in heavy-ion collisions: general aspects and recent developments”, Adv. High Energy Phys. 2016 (2016) 9623034, arXiv:1605.08694 [nucl-th].
- M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber modeling in high energy nuclear collisions”, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205–243, arXiv:nucl-ex/0701025.
- B. Schenke, C. Shen, and P. Tribedy, “Hybrid Color Glass Condensate and hydrodynamic description of the Relativistic Heavy Ion Collider small system scan”, Phys. Lett. B 803 (2020) 135322, arXiv:1908.06212 [nucl-th].
- J. Liu, C. Shen, and U. Heinz, “Pre-equilibrium evolution effects on heavy-ion collision observables”, Phys. Rev. C 91 (2015) 064906, arXiv:1504.02160 [nucl-th]. [Erratum: Phys.Rev.C 92, 049904 (2015)].
- B. Schenke, P. Tribedy, and R. Venugopalan, “Fluctuating Glasma initial conditions and flow in heavy ion collisions”, Phys. Rev. Lett. 108 (2012) 252301, arXiv:1202.6646 [nucl-th].
- A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, “Decoding the phase structure of QCD via particle production at high energy”, Nature 561 (2018) 321–330, arXiv:1710.09425 [nucl-th].
- HotQCD Collaboration, A. Bazavov et al., “Chiral crossover in QCD at zero and non-zero chemical potentials”, Phys. Lett. B 795 (2019) 15–21, arXiv:1812.08235 [hep-lat].
- V. Greco, C. M. Ko, and P. Levai, “Parton coalescence and anti-proton / pion anomaly at RHIC”, Phys. Rev. Lett. 90 (2003) 202302, arXiv:nucl-th/0301093.
- V. Greco, C. M. Ko, and P. Levai, “Parton coalescence at RHIC”, Phys. Rev. C 68 (2003) 034904, arXiv:nucl-th/0305024.
- R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, “Hadronization in heavy ion collisions: Recombination and fragmentation of partons”, Phys. Rev. Lett. 90 (2003) 202303, arXiv:nucl-th/0301087.
- R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, “Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase”, Phys. Rev. C 68 (2003) 044902, arXiv:nucl-th/0306027.
- D. Teaney, “Chemical freezeout in heavy ion collisions”, arXiv:nucl-th/0204023.
- J. Manninen and F. Becattini, “Chemical freeze-out in ultra-relativistic heavy ion collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 130 and 200 GeV”, Phys. Rev. C 78 (2008) 054901, arXiv:0806.4100 [nucl-th].
- U. W. Heinz and G. Kestin, “Jozso’s Legacy: Chemical and Kinetic Freeze-out in Heavy-Ion Collisions”, Eur. Phys. J. ST 155 (2008) 75–87, arXiv:0709.3366 [nucl-th].
- J. Steinheimer, J. Aichelin, M. Bleicher, and H. Stöcker, “Influence of the hadronic phase on observables in ultrarelativistic heavy ion collisions”, Phys. Rev. C 95 (2017) 064902, arXiv:1703.06638 [nucl-th].
- G. Torrieri and J. Rafelski, “Strange hadron resonances as a signature of freezeout dynamics”, Phys. Lett. B 509 (2001) 239–245, arXiv:hep-ph/0103149.
- C. Markert, “What do we learn from resonance production in heavy ion collisions?”, J. Phys. G 31 (2005) S169–S178, arXiv:nucl-ex/0503013.
- ALICE Collaboration, S. Acharya et al., “Production of K(892)0*{}^{*}(892)^{0}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT ( 892 ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and ϕ(1020)italic-ϕ1020\phi(1020)italic_ϕ ( 1020 ) in pp and Pb–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. C 106 (2022) 034907, arXiv:2106.13113 [nucl-ex].
- ALICE Collaboration, B. Abelev et al., “K(892)0*{}^{*}(892)^{0}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT ( 892 ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and ϕitalic-ϕ\phiitalic_ϕ(1020) production in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. C 91 (2015) 024609, arXiv:1404.0495 [nucl-ex].
- NA49 Collaboration, C. Alt et al., “Energy dependence of ϕitalic-ϕ\phiitalic_ϕ meson production in central Pb+Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 6 to 17 GeV”, Phys. Rev. C 78 (2008) 044907, arXiv:0806.1937 [nucl-ex].
- NA49 Collaboration, S. V. Afanasiev et al., “Production of ϕitalic-ϕ\phiitalic_ϕ mesons in p+p, p+Pb and central Pb+Pb collisions at E(beam) = 158 A GeV”, Phys. Lett. B 491 (2000) 59–66.
- NA49 Collaboration, T. Anticic et al., “K(892)0∗{}^{\ast}(892)^{0}start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT ( 892 ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and K¯∗(892)0superscript¯K∗superscript8920\bar{\rm{K}}^{\ast}(892)^{0}over¯ start_ARG roman_K end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( 892 ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production in central Pb+Pb, Si+Si, C+C and inelastic p+p collisions at 158 A GeV”, Phys. Rev. C 84 (2011) 064909, arXiv:1105.3109 [nucl-ex].
- PHENIX Collaboration, A. Adare et al., “Measurement of KS0superscriptsubscriptKS0\rm{K}_{\rm{S}}^{0}roman_K start_POSTSUBSCRIPT roman_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and K*0absent0{}^{*0}start_FLOATSUPERSCRIPT * 0 end_FLOATSUPERSCRIPT in p+p, d+Au, and Cu+Cu collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. C 90 (2014) 054905, arXiv:1405.3628 [nucl-ex].
- PHENIX Collaboration, N. J. Abdulameer et al., “Measurement of ϕitalic-ϕ\phiitalic_ϕ-meson production in Cu+Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV and U+U collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 193 GeV”, Phys. Rev. C 107 (2023) 014907, arXiv:2207.10745 [nucl-ex].
- PHENIX Collaboration, U. Acharya et al., “Study of ϕitalic-ϕ\phiitalic_ϕ meson production in p+Al, p+Au, d+Au, and 33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTHe+Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. C 106 (2022) 014908, arXiv:2203.06087 [nucl-ex].
- PHENIX Collaboration, S. S. Adler et al., “Production of ϕitalic-ϕ\phiitalic_ϕ mesons at mid-rapidity in sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV Au+Au collisions at RHIC”, Phys. Rev. C 72 (2005) 014903, arXiv:nucl-ex/0410012.
- STAR Collaboration, B. I. Abelev et al., “Energy and system size dependence of ϕitalic-ϕ\phiitalic_ϕ meson production in Cu+Cu and Au+Au collisions”, Phys. Lett. B 673 (2009) 183–191, arXiv:0810.4979 [nucl-ex].
- STAR Collaboration, B. I. Abelev et al., “Measurements of ϕitalic-ϕ\phiitalic_ϕ meson production in relativistic heavy-ion collisions at RHIC”, Phys. Rev. C 79 (2009) 064903, arXiv:0809.4737 [nucl-ex].
- STAR Collaboration, C. Adler et al., “K*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT(892)00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT production in relativistic heavy ion collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 130 GeV”, Phys. Rev. C 66 (2002) 061901, arXiv:nucl-ex/0205015.
- STAR Collaboration, J. Adams et al., “K*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT(892) resonance production in Au+Au and p+p collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV at STAR”, Phys. Rev. C 71 (2005) 064902, arXiv:nucl-ex/0412019.
- STAR Collaboration, M. M. Aggarwal et al., “K*0absent0{}^{*0}start_FLOATSUPERSCRIPT * 0 end_FLOATSUPERSCRIPT production in Cu+Cu and Au+Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 62.4 GeV and 200 GeV”, Phys. Rev. C 84 (2011) 034909, arXiv:1006.1961 [nucl-ex].
- S. Singha, B. Mohanty, and Z.-W. Lin, “Studying re-scattering effect in heavy-ion collision through K*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT production”, Int. J. Mod. Phys. E 24 (2015) 1550041, arXiv:1505.02342 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Evidence of rescattering effect in Pb–Pb collisions at the LHC through production of K*(892)0superscriptKsuperscript8920\rm{K}^{*}(892)^{0}roman_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( 892 ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and ϕ(1020)italic-ϕ1020\phi(1020)italic_ϕ ( 1020 ) mesons”, Phys. Lett. B 802 (2020) 135225, arXiv:1910.14419 [nucl-ex].
- C. Loizides, J. Nagle, and P. Steinberg, “Improved version of the PHOBOS Glauber Monte Carlo”, SoftwareX 1-2 (2015) 13–18, arXiv:1408.2549 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Production of charged pions, kaons, and (anti-)protons in Pb–Pb and inelastic pp𝑝𝑝ppitalic_p italic_p collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. C 101 (2020) 044907, arXiv:1910.07678 [nucl-ex].
- ALICE Collaboration, B. Abelev et al., “Production of charged pions, kaons and protons at large transverse momenta in pp and Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Lett. B 736 (2014) 196–207, arXiv:1401.1250 [nucl-ex].
- ALICE Collaboration, J. Adam et al., “Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. C 93 (2016) 034913, arXiv:1506.07287 [nucl-ex].
- A. Motornenko, V. Vovchenko, C. Greiner, and H. Stoecker, “Kinetic freeze-out temperature from yields of short-lived resonances”, Phys. Rev. C 102 (2020) 024909, arXiv:1908.11730 [hep-ph].
- ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
- ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
- ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
- J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A 622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
- ALICE Collaboration, G. Dellacasa et al., “ALICE technical design report of the time-of-flight system (TOF)”, CERN-LHCC-2000-012 .
- ALICE Collaboration, P. Cortese et al., “ALICE: Addendum to the technical design report of the time of flight system (TOF)”, CERN-LHCC-2002-016 .
- ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
- Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics”, PTEP 2020 (2020) 083C01.
- ALICE Collaboration, F. Carnesecchi, “Performance of the ALICE Time-Of-Flight detector at the LHC”, JINST 14 (2019) C06023, arXiv:1806.03825 [physics.ins-det].
- ALICE Collaboration, S. Acharya et al., “Measurement of K*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT(892)±plus-or-minus{}^{\mathrm{\pm}}start_FLOATSUPERSCRIPT ± end_FLOATSUPERSCRIPT production in inelastic pp collisions at the LHC”, Phys. Lett. B 828 (2022) 137013, arXiv:2105.05760 [nucl-ex].
- X.-N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet production in pp, pA and AA collisions”, Phys. Rev. D 44 (1991) 3501–3516.
- R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, “GEANT Detector Description and Simulation Tool”, CERN Program Library, CERN, Geneva (1993) .
- E. Schnedermann, J. Sollfrank, and U. W. Heinz, “Thermal phenomenology of hadrons from 200-A/GeV S+S collisions”, Phys. Rev. C 48 (1993) 2462–2475, arXiv:nucl-th/9307020.
- C. Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics”, J. Statist. Phys. 52 (1988) 479–487.
- ALICE Collaboration, S. Acharya et al., “Production of light-flavor hadrons in pp collisions at s=7 and s=13 TeV𝑠7 and 𝑠13 TeV\sqrt{s}~{}=~{}7\text{ and }\sqrt{s}=13\,\text{ TeV}square-root start_ARG italic_s end_ARG = 7 and square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 81 (2021) 256, arXiv:2005.11120 [nucl-ex].
- D. Oliinychenko and C. Shen, “Resonance production in PbPb collisions at 5.02 TeV via hydrodynamics and hadronic afterburner”, arXiv:2105.07539 [hep-ph].
- J. Weil et al., “Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions”, Phys. Rev. C 94 (2016) 054905, arXiv:1606.06642 [nucl-th].
- ALICE Collaboration, B. Abelev et al., “Centrality dependence of π𝜋\piitalic_π, K, p production in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. C 88 (2013) 044910, arXiv:1303.0737 [hep-ex].
- V. Vovchenko and H. Stoecker, “Thermal-FIST: A package for heavy-ion collisions and hadronic equation of state”, Comput. Phys. Commun. 244 (2019) 295–310, arXiv:1901.05249 [nucl-th].
- V. Vovchenko, B. Dönigus, and H. Stoecker, “Canonical statistical model analysis of pp , p–Pb, and Pb–Pb collisions at energies available at the CERN Large Hadron Collider”, Phys. Rev. C 100 (2019) 054906, arXiv:1906.03145 [hep-ph].