Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of Zone Method based Physics-Informed Neural Networks in Reheating Furnaces (2308.16089v2)

Published 30 Aug 2023 in cs.LG, cs.AI, cs.NE, cs.SY, and eess.SY

Abstract: Foundation Industries (FIs) constitute glass, metals, cement, ceramics, bulk chemicals, paper, steel, etc. and provide crucial, foundational materials for a diverse set of economically relevant industries: automobiles, machinery, construction, household appliances, chemicals, etc. Reheating furnaces within the manufacturing chain of FIs are energy-intensive. Accurate and real-time prediction of underlying temperatures in reheating furnaces has the potential to reduce the overall heating time, thereby controlling the energy consumption for achieving the Net-Zero goals in FIs. In this paper, we cast this prediction as a regression task and explore neural networks due to their inherent capability of being effective and efficient, given adequate data. However, due to the infeasibility of achieving good-quality real data in scenarios like reheating furnaces, classical Hottel's zone method based computational model has been used to generate data for model training. To further enhance the Out-Of-Distribution generalization capability of the trained model, we propose a Physics-Informed Neural Network (PINN) by incorporating prior physical knowledge using a set of novel Energy-Balance regularizers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.