Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum Width for Deep, Narrow MLP: A Diffeomorphism Approach (2308.15873v2)

Published 30 Aug 2023 in cs.LG and math.GT

Abstract: Recently, there has been a growing focus on determining the minimum width requirements for achieving the universal approximation property in deep, narrow Multi-Layer Perceptrons (MLPs). Among these challenges, one particularly challenging task is approximating a continuous function under the uniform norm, as indicated by the significant disparity between its lower and upper bounds. To address this problem, we propose a framework that simplifies finding the minimum width for deep, narrow MLPs into determining a purely geometrical function denoted as $w(d_x, d_y)$. This function relies solely on the input and output dimensions, represented as $d_x$ and $d_y$, respectively. Two key steps support this framework. First, we demonstrate that deep, narrow MLPs, when provided with a small additional width, can approximate a $C2$-diffeomorphism. Subsequently, using this result, we prove that $w(d_x, d_y)$ equates to the optimal minimum width required for deep, narrow MLPs to achieve universality. By employing the aforementioned framework and the Whitney embedding theorem, we provide an upper bound for the minimum width, given by $\operatorname{max}(2d_x+1, d_y) + \alpha(\sigma)$, where $0 \leq \alpha(\sigma) \leq 2$ represents a constant depending on the activation function. Furthermore, we provide a lower bound of $4$ for the minimum width in cases where the input and output dimensions are both equal to two.

Citations (3)

Summary

We haven't generated a summary for this paper yet.