Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A coupled high-accuracy phase-field fluid-structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium (2308.15400v2)

Published 29 Aug 2023 in math.NA and cs.NA

Abstract: In this work, we couple a high-accuracy phase-field fracture reconstruction approach iteratively to fluid-structure interaction. The key motivation is to utilize phase-field modelling to compute the fracture path. A mesh reconstruction allows a switch from interface-capturing to interface-tracking in which the coupling conditions can be realized in a highly accurate fashion. Consequently, inside the fracture, a Stokes flow can be modelled that is coupled to the surrounding elastic medium. A fully coupled approach is obtained by iterating between the phase-field and the fluid-structure interaction model. The resulting algorithm is demonstrated for several numerical examples of quasi-static brittle fractures. We consider both stationary and quasi-stationary problems. In the latter, the dynamics arise through an incrementally increasing given pressure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (89)
  1. “A high-accuracy framework for phase-field fracture interface reconstructions with application to Stokes fluid-filled fracture surrounded by an elastic medium” In Comput. Methods Appl. Mech. Engrg. 415, 2023, pp. 116202 DOI: 10.1016/j.cma.2023.116202
  2. K. Yoshioka, D. Naumov and O. Kolditz “On crack opening computation in variational phase-field models for fracture” In Comput. Methods Appl. Mech. Engrg. 369 Elsevier BV, 2020, pp. 113210 DOI: 10.1016/j.cma.2020.113210
  3. B. Giovanardi, A. Scotti and L. Formaggia “A hybrid XFEM –Phase field ( Xfield ) method for crack propagation in brittle elastic materials” In Comput. Methods Appl. Mech. Engrg. 320 Elsevier BV, 2017, pp. 396–420 DOI: 10.1016/j.cma.2017.03.039
  4. “From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials” In Comput. Methods Appl. Mech. Engrg. 299, 2016, pp. 57–89 DOI: 10.1016/j.cma.2015.10.019
  5. Yue Xu, Tao You and Qizhi Zhu “Reconstruct lower-dimensional crack paths from phase-field point cloud” In International Journal for Numerical Methods in Engineering 124.15, 2023, pp. 3329–3351 DOI: https://doi.org/10.1002/nme.7249
  6. “A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography” In Comput. Methods Appl. Mech. Engrg. 312, 2016, pp. 567–595 DOI: 10.1016/j.cma.2015.10.007
  7. S. Lee, M.F. Wheeler and T. Wick “Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches” In J. Comput. Appl. Math. 314 Elsevier BV, 2017, pp. 40–60 DOI: 10.1016/j.cam.2016.10.022
  8. “A combined finite element–finite volume framework for phase-field fracture” In Comput. Methods Appl. Mech. Engrg. 373, 2021, pp. 113474 DOI: 10.1016/j.cma.2020.113474
  9. “Revisiting nucleation in the phase-field approach to brittle fracture” In J. Mech. Phys. Solids 142, 2020, pp. 104027 DOI: 10.1016/j.jmps.2020.104027
  10. B. Bourdin, G.A. Francfort and J.-J. Marigo “Numerical experiments in revisited brittle fracture” In J. Mech. Phys. Solids 48.4 Elsevier BV, 2000, pp. 797–826 DOI: 10.1016/S0022-5096(99)00028-9
  11. “A continuum phase field model for fracture” Computational Mechanics in Fracture and Damage: A Special Issue in Honor of Prof. Gross In Eng. Fract. Mech. 77.18, 2010, pp. 3625–3634 DOI: 10.1016/j.engfracmech.2010.08.009
  12. C. Miehe, F. Welschinger and M. Hofacker “Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations” In Internat. J. Numer. Methods Engrg. 83, 2010, pp. 1273–1311 DOI: 10.1002/nme.2861
  13. C. Miehe, M. Hofacker and F. Welschinger “A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits” In Comput. Methods Appl. Mech. Engrg. 199, 2010, pp. 2765–2778 DOI: 10.1016/j.cma.2010.04.011
  14. “A phase-field description of dynamic brittle fracture” In Comput. Methods Appl. Mech. Engrg. 217, 2012, pp. 77–95 DOI: 10.1016/j.cma.2012.01.008
  15. Marreddy Ambati, Tymofiy Gerasimov and Laura De Lorenzis “A review on phase-field models of brittle fracture and a new fast hybrid formulation” In Comput. Mech. 55.2 Springer Berlin Heidelberg, 2015, pp. 383–405 DOI: 10.1007/s00466-014-1109-y
  16. “Stability analysis of the phase-field method for fracture with a general degradation function and plasticity induced crack generation” IUTAM Symposium on Dynamic Instabilities in Solids In Mech. Mater. 116, 2018, pp. 33–48 DOI: 10.1016/j.mechmat.2017.04.003
  17. “High-accuracy phase-field models for brittle fracture based on a new family of degradation functions” In J. Mech. Phys. Solids 111, 2018, pp. 458–489 DOI: 10.1016/j.jmps.2017.10.015
  18. Mary F. Wheeler, Thomas Wick and Sanghyun Lee “IPACS: Integrated Phase-Field Advanced Crack Propagation Simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media” In Comput. Methods Appl. Mech. Engrg. 367, 2020, pp. 113124 DOI: 10.1016/j.cma.2020.113124
  19. B. Bourdin, G.A. Francfort and J.-J. Marigo “The Variational approach to fracture” In J. Elasticity 91.1–3, 2008, pp. 1–148 DOI: 10.1007/s10659-007-9107-3
  20. “Phase-field modeling of fracture” In Advances in Applied Mechanics Elsevier, 2020, pp. 1–183 DOI: 10.1016/bs.aams.2019.08.001
  21. T. Wick “Multiphysics Phase-Field Fracture” 28, Radon Series on Computational and Applied Mathematics Berlin, Boston: De Gruyter, 2020 DOI: 10.1515/9783110497397
  22. Yousef Heider “A review on phase-field modeling of hydraulic fracturing” In Eng. Fract. Mech. 253, 2021, pp. 107881 DOI: 10.1016/j.engfracmech.2021.107881
  23. “A comparative review of peridynamics and phase-field models for engineering fracture mechanics” In Comput. Mech. 69, 2022, pp. 1259–1293 DOI: 10.1007/s00466-022-02147-0
  24. T.J.R. Hughes, W.K. Liu and T. Zimmermann “Lagrangian-Eulerian finite element formulation for incompressible viscous flows” In Comput. Methods Appl. Mech. Engrg. 29, 1981, pp. 329–349 DOI: 10.1016/0045-7825(81)90049-9
  25. J. Donea, S. Giuliani and J.P. Halleux “An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions” In Comput. Methods Appl. Mech. Engrg. 33, 1982, pp. 689–723 DOI: 10.1016/0045-7825(82)90128-1
  26. “Arbitrary Lagrangian-Eulerian methods”, Encyclopedia of Computational Mechanics John WileySons, 2004, pp. 1–25
  27. “A stability analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements” In East-West J. Numer. Math. 7, 1999, pp. 105–132
  28. “Stability analysis of second-order time accurate schemes for ALE-FEM” In Comput. Methods Appl. Mech. Engrg. 193.39-41, 2004, pp. 4097–4116
  29. “Fluid-Structure Interaction: Modelling, Simulation, Optimization” 53, Lecture Notes in Computational Science and Engineering Springer, 2006
  30. H.-J. Bungartz, Miriam Mehl and M. Schäfer “Fluid-Structure Interaction II: Modelling, Simulation, Optimization”, Lecture Notes in Computational Science and Engineering Springer, 2010
  31. T. Richter “Fluid-structure interactions: Models, analysis, and finite elements” Springer, 2017 DOI: 10.1007/978-3-319-63970-3
  32. “Fundamental Trends in Fluid-Structure Interaction” World Scientific, 2010, pp. 293 DOI: 10.1142/7675
  33. T. Bodnár, G.P. Galdi and Š. Nečasová “Fluid-Structure Interaction and Biomedical Applications”, Advances in Mathematical Fluid Mechanics Springer Basel, 2014
  34. Y. Bazilevs, K. Takizawa and T.E. Tezduyar “Computational Fluid-Structure Interaction: Methods and Applications” Wiley, 2013 DOI: 10.1002/9781118483565
  35. L. Formaggia, A. Quarteroni and A. Veneziani “Cardiovascular Mathematics: Modeling and simulation of the circulatory system” Springer-Verlag, Italia, Milano, 2009
  36. Pengtao Sun, Jinchao Xu and Lixiang Zhang “Full Eulerian finite element method of a phase field model for fluid-structure interaction problem” In Comput. & Fluids 90.0, 2014, pp. 1–8 DOI: 10.1016/j.compfluid.2013.11.010
  37. “An interface and geometry preserving phase-field method for fully Eulerian fluid-structure interaction” In J. Comput. Phys. 476, 2023, pp. 111903 DOI: 10.1016/j.jcp.2022.111903
  38. T. Wick “Coupling fluid-structure interaction with phase-field fracture” In J. Comput. Phys. 327, 2016, pp. 67–96 DOI: 10.1016/j.jcp.2016.09.024
  39. A. Mikelić, M.F. Wheeler and T. Wick “A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium” In SIAM Multiscale Model. Simul. 13.1, 2015, pp. 367–398
  40. “Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media” In Comput. Methods Appl. Mech. Engrg. 304, 2016, pp. 619–655 DOI: 10.1016/j.cma.2015.09.021
  41. C. Miehe, S. Mauthe and S. Teichtmeister “Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture” In J. Mech. Phys. Solids 82, 2015, pp. 186–217 DOI: 10.1016/j.jmps.2015.04.006
  42. S. Lee, M.F. Wheeler and T. Wick “Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model” In Comput. Methods Appl. Mech. Engrg. 305, 2016, pp. 111–132
  43. “A variational hydraulic fracturing model coupled to a reservoir simulator” In Int. J. Rock Mech. Min. Sci. 88, 2016, pp. 137–150 DOI: 10.1016/j.ijrmms.2016.07.020
  44. “Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data” In Eng. Fract. Mech. 202, 2018, pp. 116–134 DOI: 10.1016/j.engfracmech.2018.09.010
  45. T. Cajuhi, L. Sanavia and L. De Lorenzis “Phase-field modeling of fracture in variably saturated porous media” In Comput. Mech. 61.3, 2018, pp. 299–318 DOI: 10.1007/s00466-017-1459-3
  46. D. Santillan, R. Juanes and L. Cueto-Felgueroso “Phase field model of fluid-driven fracture in elastic media: Immersed-fracture formulation and validation with analytical solutions” 2016JB013572 In J. Geophys. Res. Solid Earth 122.4, 2017, pp. 2565–2589 DOI: 10.1002/2016JB013572
  47. Zachary A. Wilson and Chad M. Landis “Phase-field modeling of hydraulic fracture” In J. Mech. Phys. Solids 96, 2016, pp. 264–290 DOI: 10.1016/j.jmps.2016.07.019
  48. “A global-local approach for hydraulic phase-field fracture in poroelastic media” Robust and Reliable Finite Element Methods in Poromechanics In Comput. Math. Appl. 91, 2021, pp. 99–121 DOI: 10.1016/j.camwa.2020.07.013
  49. C. Chukwudozie, B. Bourdin and K. Yoshioka “A variational phase-field model for hydraulic fracturing in porous media” In Comput. Methods Appl. Mech. Engrg. 347, 2019, pp. 957–982 DOI: 10.1016/j.cma.2018.12.037
  50. “A phase field framework for capillary-induced fracture in unsaturated porous media: drying-induced vs. hydraulic cracking” In Comput. Methods Appl. Mech. Engrg. 359, 2020, pp. 112647\bibrangessep26 DOI: 10.1016/j.cma.2019.112647
  51. “A phase-field model for hydraulic fracture nucleation and propagation in porous media”, 2023 DOI: 10.48550/arxiv.2304.13197
  52. “A phase-field modeling approach of hydraulic fracture in saturated porous media” Multi-Physics of Solids at Fracture In Mech. Res. Comm. 80, 2017, pp. 38–46 DOI: 10.1016/j.mechrescom.2016.07.002
  53. A. Costa, T. Hu and J.E. Dolbow “On formulations for modeling pressurized cracks within phase-field methods for fracture” In Theor. Appl. Fract. Mec., 2023, pp. 104040 DOI: 10.1016/j.tafmec.2023.104040
  54. “A phase-field description for pressurized and non-isothermal propagating fractures” In Comput. Methods Appl. Mech. Engrg. 351, 2019, pp. 860–890 DOI: 10.1016/j.cma.2019.03.058
  55. “Thermomechanical phase-field fracture modeling of fluid-saturated porous media” In Proc. Appl. Math. Mech. 20.1, 2021, pp. e202000332 DOI: 10.1002/pamm.202000332
  56. Cam-Lai Nguyen, Yousef Heider and Bernd Markert “A non-isothermal phase-field hydraulic fracture modeling in saturated porous media with convection-dominated heat transport” In Acta Geotech., 2023
  57. “Asynchronous phase field fracture model for porous media with thermally non-equilibrated constituents” In Comput. Methods Appl. Mech. Engrg. 387, 2021, pp. 114182 DOI: 10.1016/j.cma.2021.114182
  58. S. Badia, A. Quaini and A. Quarteroni “Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction” In J. Comput. Phys. 228.21, 2009, pp. 7986–8014 DOI: 10.1016/j.jcp.2009.07.019
  59. “Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach” Special Issue on Advances in Simulations of Subsurface Flow and Transport (Honoring Professor Mary F. Wheeler) In Comput. Methods Appl. Mech. Engrg. 292, 2015, pp. 138–170 DOI: 10.1016/j.cma.2014.10.047
  60. “Effects of Poroelasticity on Fluid-Structure Interaction in Arteries: a Computational Sensitivity Study” In Modeling the Heart and the Circulatory System Springer, 2015, pp. 197–220 DOI: 10.1007/978-3-319-05230-4˙8
  61. “A computational framework for fluid-porous structure interaction with large structural deformation” In Meccanica 54.1-2, 2019, pp. 101–121 DOI: 10.1007/s11012-018-00932-x
  62. A. Mikelić, M.F. Wheeler and T. Wick “A phase-field approach to the fluid filled fracture surrounded by a poroelastic medium” ICES Report 13-15, 2013 URL: www.oden.utexas.edu/media/reports/2013/1315.pdf
  63. “Revisiting brittle fracture as an energy minimization problem” In J. Mech. Phys. Solids 46.8, 1998, pp. 1319–1342 DOI: 10.1016/S0022-5096(98)00034-9
  64. “Approximation of functionals depending on jumps by elliptic functionals via ΓΓ\Gammaroman_Γ-convergence” In Comm. Pure Appl. Math. 43.8 Wiley, 1990, pp. 999–1036 DOI: 10.1002/cpa.3160430805
  65. “On the approximation of free discontinuity problems” In Boll. Un. Mat. Ital. 6, 1992, pp. 105–123
  66. V. Martin, J. Jaffré and J.E. Roberts “Modeling Fractures and Barriers as Interfaces for Flow in Porous Media” In SIAM J. Sci. Comput. 26.5, 2005, pp. 1667–1691 DOI: 10.1137/S1064827503429363
  67. M. Bukac, I. Yotov and P. Zunino “Dimensional model reduction for flow through fractures in poroelastic media” In ESAIM Math. Model. Numer. Anal. 51.4, 2017, pp. 1429–1471 DOI: 10.1051/m2an/2016069
  68. A. Mikelić, M.F. Wheeler and T. Wick “Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium” In GEM - Int. J. Geomath. 10.1 Springer ScienceBusiness Media LLC, 2019 DOI: 10.1007/s13137-019-0113-y
  69. B. Bourdin “Image Segmentation with a finite element method” In Mathematical Modelling and Numerical Analysis 33.2, 1999, pp. 229–244
  70. “A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure” In Engineering Fracture Mechanics 139, 2015, pp. 18–39
  71. “Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems” In Proc. Appl. Math. Mech. 18.1 Wiley, 2018, pp. e201800353 DOI: 10.1002/pamm.201800353
  72. B. Bourdin “Numerical implementation of the variational formulation for quasi-static brittle fracture” In Interfaces and free boundaries 9, 2007, pp. 411–430
  73. “Crack nucleation in variational phase-field models of brittle fracture” In J. Mech. Phys. Solids 110, 2018, pp. 80–99 DOI: 10.1016/j.jmps.2017.09.006
  74. T. Heister, M.F. Wheeler and T. Wick “A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach” In Comput. Methods Appl. Mech. Engrg. 290 Elsevier BV, 2015, pp. 466–495 DOI: 10.1016/j.cma.2015.03.009
  75. T. Wick “An Error-Oriented Newton/Inexact Augmented Lagrangian Approach for Fully Monolithic Phase-Field Fracture Propagation” In SIAM J. Sci. Comput. 39.4 Society for Industrial & Applied Mathematics (SIAM), 2017, pp. B589–B617 DOI: 10.1137/16m1063873
  76. L. Kolditz, K. Mang and T. Wick “A modified combined active-set Newton method for solving phase-field fracture into the monolithic limit” In Comput. Methods Appl. Mech. Engrg. 414 Elsevier BV, 2023, pp. 116170 DOI: 10.1016/j.cma.2023.116170
  77. A. Mikelić, M.F. Wheeler and T. Wick “A quasi-static phase-field approach to pressurized fractures” In Nonlinearity 28.5 IOP Publishing, 2015, pp. 1371–1399 DOI: 10.1088/0951-7715/28/5/1371
  78. “A monolithic FEM/Multigrid solver for ALE formulation of fluid structure with application in biomechanics” Springer, 2006, pp. 146–170 DOI: 10.1007/3-540-34596-5˙7
  79. T. Dunne “Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations”, 2007 DOI: 10.11588/heidok.00007944
  80. T. Wick “Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics”, 2011 DOI: 10.11588/heidok.00012992
  81. “Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates” In Comput. Methods Appl. Mech. Engrg. 199, 2010, pp. 2633–2642 DOI: 10.1016/j.cma.2010.04.016
  82. “CutFEM: Discretizing geometry and partial differential equations” In Internat. J. Numer. Methods Engrg. 104.7 Wiley, 2014, pp. 472–501 DOI: 10.1002/nme.4823
  83. R. Temam “Navier-Stokes Equations: Theory and Numerical Analysis” Providence, Rhode Island: AMS Chelsea Publishing, 2001
  84. “A coupled high-accuracy phase-field fluid-structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium - Reproduction Scripts” Zenodo repository: Zenodo, 2023 DOI: 10.5281/zenodo.8298461
  85. J. Schöberl “NETGEN an advancing front 2D/3D-mesh generator based on abstract rules” In Comput. Vis. Sci. 1.1 Springer Nature, 1997, pp. 41–52 DOI: 10.1007/s007910050004
  86. J. Schöberl “C++11 implementation of finite elements in NGSolve”, 2014 URL: http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf
  87. “ngsxfem: Add-on to NGSolve for geometrically unfitted finite element discretizations” In J. Open Source Softw. 6.64 The Open Journal, 2021, pp. 3237 DOI: 10.21105/joss.03237
  88. I.N. Sneddon “The distribution of stress in the neighbourhood of a crack in an elastic solid” In Proc. R. Soc. A 187.1009 The Royal Society, 1946, pp. 229–260 DOI: 10.1098/rspa.1946.0077
  89. “Crack problems in the classical theory of elasticity”, SIAM series in Applied Mathematics Philadelphia: John WileySons, 1969
Citations (2)

Summary

We haven't generated a summary for this paper yet.