A coupled high-accuracy phase-field fluid-structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium (2308.15400v2)
Abstract: In this work, we couple a high-accuracy phase-field fracture reconstruction approach iteratively to fluid-structure interaction. The key motivation is to utilize phase-field modelling to compute the fracture path. A mesh reconstruction allows a switch from interface-capturing to interface-tracking in which the coupling conditions can be realized in a highly accurate fashion. Consequently, inside the fracture, a Stokes flow can be modelled that is coupled to the surrounding elastic medium. A fully coupled approach is obtained by iterating between the phase-field and the fluid-structure interaction model. The resulting algorithm is demonstrated for several numerical examples of quasi-static brittle fractures. We consider both stationary and quasi-stationary problems. In the latter, the dynamics arise through an incrementally increasing given pressure.
- “A high-accuracy framework for phase-field fracture interface reconstructions with application to Stokes fluid-filled fracture surrounded by an elastic medium” In Comput. Methods Appl. Mech. Engrg. 415, 2023, pp. 116202 DOI: 10.1016/j.cma.2023.116202
- K. Yoshioka, D. Naumov and O. Kolditz “On crack opening computation in variational phase-field models for fracture” In Comput. Methods Appl. Mech. Engrg. 369 Elsevier BV, 2020, pp. 113210 DOI: 10.1016/j.cma.2020.113210
- B. Giovanardi, A. Scotti and L. Formaggia “A hybrid XFEM –Phase field ( Xfield ) method for crack propagation in brittle elastic materials” In Comput. Methods Appl. Mech. Engrg. 320 Elsevier BV, 2017, pp. 396–420 DOI: 10.1016/j.cma.2017.03.039
- “From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials” In Comput. Methods Appl. Mech. Engrg. 299, 2016, pp. 57–89 DOI: 10.1016/j.cma.2015.10.019
- Yue Xu, Tao You and Qizhi Zhu “Reconstruct lower-dimensional crack paths from phase-field point cloud” In International Journal for Numerical Methods in Engineering 124.15, 2023, pp. 3329–3351 DOI: https://doi.org/10.1002/nme.7249
- “A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography” In Comput. Methods Appl. Mech. Engrg. 312, 2016, pp. 567–595 DOI: 10.1016/j.cma.2015.10.007
- S. Lee, M.F. Wheeler and T. Wick “Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches” In J. Comput. Appl. Math. 314 Elsevier BV, 2017, pp. 40–60 DOI: 10.1016/j.cam.2016.10.022
- “A combined finite element–finite volume framework for phase-field fracture” In Comput. Methods Appl. Mech. Engrg. 373, 2021, pp. 113474 DOI: 10.1016/j.cma.2020.113474
- “Revisiting nucleation in the phase-field approach to brittle fracture” In J. Mech. Phys. Solids 142, 2020, pp. 104027 DOI: 10.1016/j.jmps.2020.104027
- B. Bourdin, G.A. Francfort and J.-J. Marigo “Numerical experiments in revisited brittle fracture” In J. Mech. Phys. Solids 48.4 Elsevier BV, 2000, pp. 797–826 DOI: 10.1016/S0022-5096(99)00028-9
- “A continuum phase field model for fracture” Computational Mechanics in Fracture and Damage: A Special Issue in Honor of Prof. Gross In Eng. Fract. Mech. 77.18, 2010, pp. 3625–3634 DOI: 10.1016/j.engfracmech.2010.08.009
- C. Miehe, F. Welschinger and M. Hofacker “Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations” In Internat. J. Numer. Methods Engrg. 83, 2010, pp. 1273–1311 DOI: 10.1002/nme.2861
- C. Miehe, M. Hofacker and F. Welschinger “A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits” In Comput. Methods Appl. Mech. Engrg. 199, 2010, pp. 2765–2778 DOI: 10.1016/j.cma.2010.04.011
- “A phase-field description of dynamic brittle fracture” In Comput. Methods Appl. Mech. Engrg. 217, 2012, pp. 77–95 DOI: 10.1016/j.cma.2012.01.008
- Marreddy Ambati, Tymofiy Gerasimov and Laura De Lorenzis “A review on phase-field models of brittle fracture and a new fast hybrid formulation” In Comput. Mech. 55.2 Springer Berlin Heidelberg, 2015, pp. 383–405 DOI: 10.1007/s00466-014-1109-y
- “Stability analysis of the phase-field method for fracture with a general degradation function and plasticity induced crack generation” IUTAM Symposium on Dynamic Instabilities in Solids In Mech. Mater. 116, 2018, pp. 33–48 DOI: 10.1016/j.mechmat.2017.04.003
- “High-accuracy phase-field models for brittle fracture based on a new family of degradation functions” In J. Mech. Phys. Solids 111, 2018, pp. 458–489 DOI: 10.1016/j.jmps.2017.10.015
- Mary F. Wheeler, Thomas Wick and Sanghyun Lee “IPACS: Integrated Phase-Field Advanced Crack Propagation Simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media” In Comput. Methods Appl. Mech. Engrg. 367, 2020, pp. 113124 DOI: 10.1016/j.cma.2020.113124
- B. Bourdin, G.A. Francfort and J.-J. Marigo “The Variational approach to fracture” In J. Elasticity 91.1–3, 2008, pp. 1–148 DOI: 10.1007/s10659-007-9107-3
- “Phase-field modeling of fracture” In Advances in Applied Mechanics Elsevier, 2020, pp. 1–183 DOI: 10.1016/bs.aams.2019.08.001
- T. Wick “Multiphysics Phase-Field Fracture” 28, Radon Series on Computational and Applied Mathematics Berlin, Boston: De Gruyter, 2020 DOI: 10.1515/9783110497397
- Yousef Heider “A review on phase-field modeling of hydraulic fracturing” In Eng. Fract. Mech. 253, 2021, pp. 107881 DOI: 10.1016/j.engfracmech.2021.107881
- “A comparative review of peridynamics and phase-field models for engineering fracture mechanics” In Comput. Mech. 69, 2022, pp. 1259–1293 DOI: 10.1007/s00466-022-02147-0
- T.J.R. Hughes, W.K. Liu and T. Zimmermann “Lagrangian-Eulerian finite element formulation for incompressible viscous flows” In Comput. Methods Appl. Mech. Engrg. 29, 1981, pp. 329–349 DOI: 10.1016/0045-7825(81)90049-9
- J. Donea, S. Giuliani and J.P. Halleux “An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions” In Comput. Methods Appl. Mech. Engrg. 33, 1982, pp. 689–723 DOI: 10.1016/0045-7825(82)90128-1
- “Arbitrary Lagrangian-Eulerian methods”, Encyclopedia of Computational Mechanics John WileySons, 2004, pp. 1–25
- “A stability analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements” In East-West J. Numer. Math. 7, 1999, pp. 105–132
- “Stability analysis of second-order time accurate schemes for ALE-FEM” In Comput. Methods Appl. Mech. Engrg. 193.39-41, 2004, pp. 4097–4116
- “Fluid-Structure Interaction: Modelling, Simulation, Optimization” 53, Lecture Notes in Computational Science and Engineering Springer, 2006
- H.-J. Bungartz, Miriam Mehl and M. Schäfer “Fluid-Structure Interaction II: Modelling, Simulation, Optimization”, Lecture Notes in Computational Science and Engineering Springer, 2010
- T. Richter “Fluid-structure interactions: Models, analysis, and finite elements” Springer, 2017 DOI: 10.1007/978-3-319-63970-3
- “Fundamental Trends in Fluid-Structure Interaction” World Scientific, 2010, pp. 293 DOI: 10.1142/7675
- T. Bodnár, G.P. Galdi and Š. Nečasová “Fluid-Structure Interaction and Biomedical Applications”, Advances in Mathematical Fluid Mechanics Springer Basel, 2014
- Y. Bazilevs, K. Takizawa and T.E. Tezduyar “Computational Fluid-Structure Interaction: Methods and Applications” Wiley, 2013 DOI: 10.1002/9781118483565
- L. Formaggia, A. Quarteroni and A. Veneziani “Cardiovascular Mathematics: Modeling and simulation of the circulatory system” Springer-Verlag, Italia, Milano, 2009
- Pengtao Sun, Jinchao Xu and Lixiang Zhang “Full Eulerian finite element method of a phase field model for fluid-structure interaction problem” In Comput. & Fluids 90.0, 2014, pp. 1–8 DOI: 10.1016/j.compfluid.2013.11.010
- “An interface and geometry preserving phase-field method for fully Eulerian fluid-structure interaction” In J. Comput. Phys. 476, 2023, pp. 111903 DOI: 10.1016/j.jcp.2022.111903
- T. Wick “Coupling fluid-structure interaction with phase-field fracture” In J. Comput. Phys. 327, 2016, pp. 67–96 DOI: 10.1016/j.jcp.2016.09.024
- A. Mikelić, M.F. Wheeler and T. Wick “A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium” In SIAM Multiscale Model. Simul. 13.1, 2015, pp. 367–398
- “Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media” In Comput. Methods Appl. Mech. Engrg. 304, 2016, pp. 619–655 DOI: 10.1016/j.cma.2015.09.021
- C. Miehe, S. Mauthe and S. Teichtmeister “Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture” In J. Mech. Phys. Solids 82, 2015, pp. 186–217 DOI: 10.1016/j.jmps.2015.04.006
- S. Lee, M.F. Wheeler and T. Wick “Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model” In Comput. Methods Appl. Mech. Engrg. 305, 2016, pp. 111–132
- “A variational hydraulic fracturing model coupled to a reservoir simulator” In Int. J. Rock Mech. Min. Sci. 88, 2016, pp. 137–150 DOI: 10.1016/j.ijrmms.2016.07.020
- “Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data” In Eng. Fract. Mech. 202, 2018, pp. 116–134 DOI: 10.1016/j.engfracmech.2018.09.010
- T. Cajuhi, L. Sanavia and L. De Lorenzis “Phase-field modeling of fracture in variably saturated porous media” In Comput. Mech. 61.3, 2018, pp. 299–318 DOI: 10.1007/s00466-017-1459-3
- D. Santillan, R. Juanes and L. Cueto-Felgueroso “Phase field model of fluid-driven fracture in elastic media: Immersed-fracture formulation and validation with analytical solutions” 2016JB013572 In J. Geophys. Res. Solid Earth 122.4, 2017, pp. 2565–2589 DOI: 10.1002/2016JB013572
- Zachary A. Wilson and Chad M. Landis “Phase-field modeling of hydraulic fracture” In J. Mech. Phys. Solids 96, 2016, pp. 264–290 DOI: 10.1016/j.jmps.2016.07.019
- “A global-local approach for hydraulic phase-field fracture in poroelastic media” Robust and Reliable Finite Element Methods in Poromechanics In Comput. Math. Appl. 91, 2021, pp. 99–121 DOI: 10.1016/j.camwa.2020.07.013
- C. Chukwudozie, B. Bourdin and K. Yoshioka “A variational phase-field model for hydraulic fracturing in porous media” In Comput. Methods Appl. Mech. Engrg. 347, 2019, pp. 957–982 DOI: 10.1016/j.cma.2018.12.037
- “A phase field framework for capillary-induced fracture in unsaturated porous media: drying-induced vs. hydraulic cracking” In Comput. Methods Appl. Mech. Engrg. 359, 2020, pp. 112647\bibrangessep26 DOI: 10.1016/j.cma.2019.112647
- “A phase-field model for hydraulic fracture nucleation and propagation in porous media”, 2023 DOI: 10.48550/arxiv.2304.13197
- “A phase-field modeling approach of hydraulic fracture in saturated porous media” Multi-Physics of Solids at Fracture In Mech. Res. Comm. 80, 2017, pp. 38–46 DOI: 10.1016/j.mechrescom.2016.07.002
- A. Costa, T. Hu and J.E. Dolbow “On formulations for modeling pressurized cracks within phase-field methods for fracture” In Theor. Appl. Fract. Mec., 2023, pp. 104040 DOI: 10.1016/j.tafmec.2023.104040
- “A phase-field description for pressurized and non-isothermal propagating fractures” In Comput. Methods Appl. Mech. Engrg. 351, 2019, pp. 860–890 DOI: 10.1016/j.cma.2019.03.058
- “Thermomechanical phase-field fracture modeling of fluid-saturated porous media” In Proc. Appl. Math. Mech. 20.1, 2021, pp. e202000332 DOI: 10.1002/pamm.202000332
- Cam-Lai Nguyen, Yousef Heider and Bernd Markert “A non-isothermal phase-field hydraulic fracture modeling in saturated porous media with convection-dominated heat transport” In Acta Geotech., 2023
- “Asynchronous phase field fracture model for porous media with thermally non-equilibrated constituents” In Comput. Methods Appl. Mech. Engrg. 387, 2021, pp. 114182 DOI: 10.1016/j.cma.2021.114182
- S. Badia, A. Quaini and A. Quarteroni “Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction” In J. Comput. Phys. 228.21, 2009, pp. 7986–8014 DOI: 10.1016/j.jcp.2009.07.019
- “Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach” Special Issue on Advances in Simulations of Subsurface Flow and Transport (Honoring Professor Mary F. Wheeler) In Comput. Methods Appl. Mech. Engrg. 292, 2015, pp. 138–170 DOI: 10.1016/j.cma.2014.10.047
- “Effects of Poroelasticity on Fluid-Structure Interaction in Arteries: a Computational Sensitivity Study” In Modeling the Heart and the Circulatory System Springer, 2015, pp. 197–220 DOI: 10.1007/978-3-319-05230-4˙8
- “A computational framework for fluid-porous structure interaction with large structural deformation” In Meccanica 54.1-2, 2019, pp. 101–121 DOI: 10.1007/s11012-018-00932-x
- A. Mikelić, M.F. Wheeler and T. Wick “A phase-field approach to the fluid filled fracture surrounded by a poroelastic medium” ICES Report 13-15, 2013 URL: www.oden.utexas.edu/media/reports/2013/1315.pdf
- “Revisiting brittle fracture as an energy minimization problem” In J. Mech. Phys. Solids 46.8, 1998, pp. 1319–1342 DOI: 10.1016/S0022-5096(98)00034-9
- “Approximation of functionals depending on jumps by elliptic functionals via ΓΓ\Gammaroman_Γ-convergence” In Comm. Pure Appl. Math. 43.8 Wiley, 1990, pp. 999–1036 DOI: 10.1002/cpa.3160430805
- “On the approximation of free discontinuity problems” In Boll. Un. Mat. Ital. 6, 1992, pp. 105–123
- V. Martin, J. Jaffré and J.E. Roberts “Modeling Fractures and Barriers as Interfaces for Flow in Porous Media” In SIAM J. Sci. Comput. 26.5, 2005, pp. 1667–1691 DOI: 10.1137/S1064827503429363
- M. Bukac, I. Yotov and P. Zunino “Dimensional model reduction for flow through fractures in poroelastic media” In ESAIM Math. Model. Numer. Anal. 51.4, 2017, pp. 1429–1471 DOI: 10.1051/m2an/2016069
- A. Mikelić, M.F. Wheeler and T. Wick “Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium” In GEM - Int. J. Geomath. 10.1 Springer ScienceBusiness Media LLC, 2019 DOI: 10.1007/s13137-019-0113-y
- B. Bourdin “Image Segmentation with a finite element method” In Mathematical Modelling and Numerical Analysis 33.2, 1999, pp. 229–244
- “A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure” In Engineering Fracture Mechanics 139, 2015, pp. 18–39
- “Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems” In Proc. Appl. Math. Mech. 18.1 Wiley, 2018, pp. e201800353 DOI: 10.1002/pamm.201800353
- B. Bourdin “Numerical implementation of the variational formulation for quasi-static brittle fracture” In Interfaces and free boundaries 9, 2007, pp. 411–430
- “Crack nucleation in variational phase-field models of brittle fracture” In J. Mech. Phys. Solids 110, 2018, pp. 80–99 DOI: 10.1016/j.jmps.2017.09.006
- T. Heister, M.F. Wheeler and T. Wick “A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach” In Comput. Methods Appl. Mech. Engrg. 290 Elsevier BV, 2015, pp. 466–495 DOI: 10.1016/j.cma.2015.03.009
- T. Wick “An Error-Oriented Newton/Inexact Augmented Lagrangian Approach for Fully Monolithic Phase-Field Fracture Propagation” In SIAM J. Sci. Comput. 39.4 Society for Industrial & Applied Mathematics (SIAM), 2017, pp. B589–B617 DOI: 10.1137/16m1063873
- L. Kolditz, K. Mang and T. Wick “A modified combined active-set Newton method for solving phase-field fracture into the monolithic limit” In Comput. Methods Appl. Mech. Engrg. 414 Elsevier BV, 2023, pp. 116170 DOI: 10.1016/j.cma.2023.116170
- A. Mikelić, M.F. Wheeler and T. Wick “A quasi-static phase-field approach to pressurized fractures” In Nonlinearity 28.5 IOP Publishing, 2015, pp. 1371–1399 DOI: 10.1088/0951-7715/28/5/1371
- “A monolithic FEM/Multigrid solver for ALE formulation of fluid structure with application in biomechanics” Springer, 2006, pp. 146–170 DOI: 10.1007/3-540-34596-5˙7
- T. Dunne “Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations”, 2007 DOI: 10.11588/heidok.00007944
- T. Wick “Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics”, 2011 DOI: 10.11588/heidok.00012992
- “Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates” In Comput. Methods Appl. Mech. Engrg. 199, 2010, pp. 2633–2642 DOI: 10.1016/j.cma.2010.04.016
- “CutFEM: Discretizing geometry and partial differential equations” In Internat. J. Numer. Methods Engrg. 104.7 Wiley, 2014, pp. 472–501 DOI: 10.1002/nme.4823
- R. Temam “Navier-Stokes Equations: Theory and Numerical Analysis” Providence, Rhode Island: AMS Chelsea Publishing, 2001
- “A coupled high-accuracy phase-field fluid-structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium - Reproduction Scripts” Zenodo repository: Zenodo, 2023 DOI: 10.5281/zenodo.8298461
- J. Schöberl “NETGEN an advancing front 2D/3D-mesh generator based on abstract rules” In Comput. Vis. Sci. 1.1 Springer Nature, 1997, pp. 41–52 DOI: 10.1007/s007910050004
- J. Schöberl “C++11 implementation of finite elements in NGSolve”, 2014 URL: http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf
- “ngsxfem: Add-on to NGSolve for geometrically unfitted finite element discretizations” In J. Open Source Softw. 6.64 The Open Journal, 2021, pp. 3237 DOI: 10.21105/joss.03237
- I.N. Sneddon “The distribution of stress in the neighbourhood of a crack in an elastic solid” In Proc. R. Soc. A 187.1009 The Royal Society, 1946, pp. 229–260 DOI: 10.1098/rspa.1946.0077
- “Crack problems in the classical theory of elasticity”, SIAM series in Applied Mathematics Philadelphia: John WileySons, 1969