Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Discovery of Invariant Measures (2308.15318v2)

Published 29 Aug 2023 in math.DS and math.OC

Abstract: Invariant measures encode the long-time behaviour of a dynamical system. In this work, we propose an optimization-based method to discover invariant measures directly from data gathered from a system. Our method does not require an explicit model for the dynamics and allows one to target specific invariant measures, such as physical and ergodic measures. Moreover, it applies to both deterministic and stochastic dynamics in either continuous or discrete time. We provide convergence results and illustrate the performance of our method on data from the logistic map and a stochastic double-well system, for which invariant measures can be found by other means. We then use our method to approximate the physical measure of the chaotic attractor of the R\"ossler system, and we extract unstable periodic orbits embedded in this attractor by identifying discrete-time periodic points of a suitably defined Poincar\'e map. This final example is truly data-driven and shows that our method can significantly outperform previous approaches based on model identification.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com