Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferences on Mixing Probabilities and Ranking in Mixed-Membership Models (2308.14988v1)

Published 29 Aug 2023 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: Network data is prevalent in numerous big data applications including economics and health networks where it is of prime importance to understand the latent structure of network. In this paper, we model the network using the Degree-Corrected Mixed Membership (DCMM) model. In DCMM model, for each node $i$, there exists a membership vector $\boldsymbol{\pi}_ i = (\boldsymbol{\pi}_i(1), \boldsymbol{\pi}_i(2),\ldots, \boldsymbol{\pi}_i(K))$, where $\boldsymbol{\pi}_i(k)$ denotes the weight that node $i$ puts in community $k$. We derive novel finite-sample expansion for the $\boldsymbol{\pi}_i(k)$s which allows us to obtain asymptotic distributions and confidence interval of the membership mixing probabilities and other related population quantities. This fills an important gap on uncertainty quantification on the membership profile. We further develop a ranking scheme of the vertices based on the membership mixing probabilities on certain communities and perform relevant statistical inferences. A multiplier bootstrap method is proposed for ranking inference of individual member's profile with respect to a given community. The validity of our theoretical results is further demonstrated by via numerical experiments in both real and synthetic data examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.