Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Composition in Differential Privacy for General Granularity Notions (Long Version) (2308.14649v2)

Published 28 Aug 2023 in cs.CR and cs.DS

Abstract: The composition theorems of differential privacy (DP) allow data curators to combine different algorithms to obtain a new algorithm that continues to satisfy DP. However, new granularity notions (i.e., neighborhood definitions), data domains, and composition settings have appeared in the literature that the classical composition theorems do not cover. For instance, the original parallel composition theorem does not translate well to general granularity notions. This complicates the opportunity of composing DP mechanisms in new settings and obtaining accurate estimates of the incurred privacy loss after composition. To overcome these limitations, we study the composability of DP in a general framework and for any kind of data domain or neighborhood definition. We give a general composition theorem in both independent and adaptive versions and we provide analogous composition results for approximate, zero-concentrated, and Gaussian DP. Besides, we study the hypothesis needed to obtain the best composition bounds. Our theorems cover both parallel and sequential composition settings. Importantly, they also cover every setting in between, allowing us to compute the final privacy loss of a composition with greatly improved accuracy.

Summary

We haven't generated a summary for this paper yet.