Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Solving parametric elliptic interface problems via interfaced operator network (2308.14537v2)

Published 28 Aug 2023 in math.NA and cs.NA

Abstract: Learning operators mapping between infinite-dimensional Banach spaces via neural networks has attracted a considerable amount of attention in recent years. In this paper, we propose an interfaced operator network (IONet) to solve parametric elliptic interface PDEs, where different coefficients, source terms, and boundary conditions are considered as input features. To capture the discontinuities in both the input functions and the output solutions across the interface, IONet divides the entire domain into several separate subdomains according to the interface and uses multiple branch nets and trunk nets. Each branch net extracts latent representations of input functions at a fixed number of sensors on a specific subdomain, and each trunk net is responsible for output solutions on one subdomain. Additionally, tailored physics-informed loss of IONet is proposed to ensure physical consistency, which greatly reduces the training dataset requirement and makes IONet effective without any paired input-output observations inside the computational domain. Extensive numerical studies demonstrate that IONet outperforms existing state-of-the-art deep operator networks in terms of accuracy and versatility.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.