Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient least squares approximation and collocation methods using radial basis functions (2308.14490v3)

Published 28 Aug 2023 in math.NA and cs.NA

Abstract: We describe an efficient method for the approximation of functions using radial basis functions (RBFs), and extend this to a solver for boundary value problems on irregular domains. The method is based on RBFs with centers on a regular grid defined on a bounding box, with some of the centers outside the computational domain. The equation is discretized using collocation with oversampling, with collocation points inside the domain only, resulting in a rectangular linear system to be solved in a least squares sense. The goal of this paper is the efficient solution of that rectangular system. We show that the least squares problem splits into a regular part, which can be expedited with the FFT, and a low rank perturbation, which is treated separately with a direct solver. The rank of the perturbation is influenced by the irregular shape of the domain and by the weak enforcement of boundary conditions at points along the boundary. The solver extends the AZ algorithm which was previously proposed for function approximation involving frames and other overcomplete sets. The solver has near optimal log-linear complexity for univariate problems, and loses optimality for higher-dimensional problems but remains faster than a direct solver.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. B. Adcock and D. Huybrechs. Frames and numerical approximation. SIAM Rev., 61(3):443–473, 2019.
  2. B. Adcock and D. Huybrechs. Frames and numerical approximation II: generalized sampling. J. Fourier Anal. Appl., 26(6):1–34, 2020.
  3. Stable and accurate least squares radial basis function approximations on bounded domains. Technical Report arXiv:2211.12598, 2022.
  4. I. Babuška. The finite element method with Lagrangian multipliers. Numer. Math., 20(3):179–192, 1973.
  5. Fast solution of the radial basis function interpolation equations: Domain decomposition methods. SIAM J. Sci. Comput., 22(5):1717–1740, 2001.
  6. A. Ben-Israel and T. N. Greville. Generalized inverses: theory and applications, volume 15. Springer Science & Business Media, 2003.
  7. M. E. Biancolini. Fast radial basis functions for engineering applications. Springer, 2017.
  8. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs. J. Comput. Phys., 231(21):7133–7151, 2012.
  9. M. D. Buhmann. Radial basis functions: theory and implementations, volume 12. Cambridge university press, 2003.
  10. J. Cherrie. Fast evaluation of radial basis functions: theory and application. PhD thesis, University of Canterbury, 2000.
  11. O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, 2nd edition, 2016.
  12. V. Coppé and D. Huybrechs. Efficient function approximation on general bounded domains using splines on a cartesian grid. Adv. Comput. Math., 48:1–41, 2022.
  13. The AZ algorithm for least squares systems with a known incomplete generalized inverse. SIAM J. Mat. Anal. Appl., 41(3):1237–1259, 2020.
  14. M. Elghaoui and R. Pasquetti. A spectral embedding method applied to the advection–diffusion equation. J. Comput. Phys., 125(2):464–476, 1996.
  15. M. Elghaoui and R. Pasquetti. Mixed spectral-boundary element embedding algorithms for the Navier–Stokes equations in the vorticity-stream function formulation. J. Comput. Phys., 153(1):82–100, 1999.
  16. Partition of unity extension of functions on complex domains. J. Comput. Phys., 375:57–79, 2018.
  17. Matrix computations. JHU press, 2013.
  18. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288, 2011.
  19. Rectangular eigenvalue problems. Adv. Comp. Math., 48(80), 2022.
  20. A. Herremans and D. Huybrechs. Efficient function approximation in enriched approximation spaces. Technical Report arXiv:2308.05652.
  21. Improving accuracy of volume penalised fluid-solid interactions. J. Comput. Phys., 430:110043, 2021.
  22. E. Kansa. Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics – II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl., 19(8):147–161, 1990.
  23. A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput., 39, 2017.
  24. M. Lyon. A fast algorithm for Fourier continuation. SIAM J. Sci. Comput., 33(6):3241–3260, 2011.
  25. G. Maierhofer and D. Huybrechs. An analysis of least-squares oversampled collocation methods for compactly perturbed boundary integral equations in two dimensions. J. Comput. Appl. Math., 416:114500, 2022.
  26. G. Maierhofer and D. Huybrechs. Convergence analysis of oversampled collocation boundary element methods in 2D. Adv. Comput. Math., 48:1–39, 2022.
  27. R. Matthysen and D. Huybrechs. Fast algorithms for the computation of Fourier extensions of arbitrary length. SIAM J. Sci. Comput., 38(2):A899–A922, 2016.
  28. R. Matthysen and D. Huybrechs. Function approximation on arbitrary domains using fourier frames. SIAM J. Numer. Anal., 56:1360–1385, 2018.
  29. 3d scattered data interpolation and approximation with multilevel compactly supported rbfs. Graphical Models, 67(3):150–165, 2005.
  30. C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.
  31. C. Piret. A radial basis function based frames strategy for bypassing the Runge phenomenon. SIAM J. Sci. Comput., 38(4):A2262–A2282, 2016.
  32. Eigenvalue stability of radial basis function discretizations for time-dependent problems. Comput. Math. with Appl., 51, 2006.
  33. I. Tominec and E. Breznik. An unfitted RBF-FD method in a least-squares setting for elliptic PDEs on complex geometries. J. Comp. Phys., 436:110283, 2021.
  34. A least squares radial basis function finite difference method with improved stability properties. SIAM J. Sci. Comput., 43, 2021.
  35. An unfitted radial basis function generated finite difference method applied to thoracic diaphragm simulations. J. Comp. Phys., 469:111496, 2022.
  36. H. Wendland. Scattered data approximation, volume 17. Cambridge university press, Cambridge, 2004.
  37. H. Wendland. Computational aspects of radial basis function approximation. In Studies in Computational Mathematics, volume 12, pages 231–256. Elsevier, 2006.
Citations (3)

Summary

We haven't generated a summary for this paper yet.