Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MetaWeather: Few-Shot Weather-Degraded Image Restoration (2308.14334v4)

Published 28 Aug 2023 in cs.CV

Abstract: Real-world weather conditions are intricate and often occur concurrently. However, most existing restoration approaches are limited in their applicability to specific weather conditions in training data and struggle to generalize to unseen weather types, including real-world weather conditions. To address this issue, we introduce MetaWeather, a universal approach that can handle diverse and novel weather conditions with a single unified model. Extending a powerful meta-learning framework, MetaWeather formulates the task of weather-degraded image restoration as a few-shot adaptation problem that predicts the degradation pattern of a query image, and learns to adapt to unseen weather conditions through a novel spatial-channel matching algorithm. Experimental results on the BID Task II.A, SPA-Data, and RealSnow datasets demonstrate that the proposed method can adapt to unseen weather conditions, significantly outperforming the state-of-the-art multi-weather image restoration methods.

Summary

We haven't generated a summary for this paper yet.