Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReFuSeg: Regularized Multi-Modal Fusion for Precise Brain Tumour Segmentation (2308.13883v1)

Published 26 Aug 2023 in eess.IV and cs.CV

Abstract: Semantic segmentation of brain tumours is a fundamental task in medical image analysis that can help clinicians in diagnosing the patient and tracking the progression of any malignant entities. Accurate segmentation of brain lesions is essential for medical diagnosis and treatment planning. However, failure to acquire specific MRI imaging modalities can prevent applications from operating in critical situations, raising concerns about their reliability and overall trustworthiness. This paper presents a novel multi-modal approach for brain lesion segmentation that leverages information from four distinct imaging modalities while being robust to real-world scenarios of missing modalities, such as T1, T1c, T2, and FLAIR MRI of brains. Our proposed method can help address the challenges posed by artifacts in medical imagery due to data acquisition errors (such as patient motion) or a reconstruction algorithm's inability to represent the anatomy while ensuring a trade-off in accuracy. Our proposed regularization module makes it robust to these scenarios and ensures the reliability of lesion segmentation.

Summary

We haven't generated a summary for this paper yet.