Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Scalable Deep Compressed Sensing (2308.13777v2)

Published 26 Aug 2023 in eess.SP, cs.CV, and cs.LG

Abstract: Compressed sensing (CS) is a promising tool for reducing sampling costs. Current deep neural network (NN)-based CS methods face the challenges of collecting labeled measurement-ground truth (GT) data and generalizing to real applications. This paper proposes a novel $\mathbf{S}$elf-supervised s$\mathbf{C}$alable deep CS method, comprising a deep $\mathbf{L}$earning scheme called $\mathbf{SCL}$ and a family of $\mathbf{Net}$works named $\mathbf{SCNet}$, which does not require GT and can handle arbitrary sampling ratios and matrices once trained on a partial measurement set. Our SCL contains a dual-domain loss and a four-stage recovery strategy. The former encourages a cross-consistency on two measurement parts and a sampling-reconstruction cycle-consistency regarding arbitrary ratios and matrices to maximize data/information utilization. The latter can progressively leverage common signal prior in external measurements and internal characteristics of test samples and learned NNs to improve accuracy. SCNet combines both the explicit guidance from optimization algorithms with implicit regularization from advanced NN blocks to learn a collaborative signal representation. Our theoretical analyses and experiments on simulated and real captured data, covering 1-/2-/3-D natural and scientific signals, demonstrate the effectiveness, superior performance, flexibility, and generalization ability of our method over existing self-supervised methods and its significant potential in competing against state-of-the-art supervised methods. Code is available at https://github.com/Guaishou74851/SCNet.

Citations (2)

Summary

We haven't generated a summary for this paper yet.