Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The local solubility for homogeneous polynomials with random coefficients over thin sets (2308.13685v1)

Published 25 Aug 2023 in math.NT and math.AG

Abstract: Let $d$ and $n$ be natural numbers greater or equal to $2$. Let $\langle \boldsymbol{a}, \nu_{d,n}(\boldsymbol{x})\rangle\in \mathbb{Z}[\boldsymbol{x}]$ be a homogeneous polynomial in $n$ variables of degree $d$ with integer coefficients $\boldsymbol{a}$, where $\langle\cdot,\cdot\rangle$ denotes the inner product, and $\nu_{d,n}: \mathbb{R}n\rightarrow \mathbb{R}N$ denotes the Veronese embedding with $N=\binom{n+d-1}{d}$. Consider a variety $V_{\boldsymbol{a}}$ in $\mathbb{P}{n-1}$, defined by $\langle \boldsymbol{a}, \nu_{d,n}(\boldsymbol{x})\rangle=0.$ In this paper, we examine a set of these varieties defined by $$\mathbb{V}{P}_{d,n}(A)={ V_{\boldsymbol{a}}\subset \mathbb{P}{n-1}|\ P(\boldsymbol{a})=0,\ |\boldsymbol{a}|{\infty}\leq A},$$ where $P\in \mathbb{Z}[\boldsymbol{x}]$ is a non-singular form in $N$ variables of degree $k$ with $2 \le k\leq C({n,d})$ for some constant $C({n,d})$ depending at most on $n$ and $d$. Suppose that $P(\boldsymbol{a})=0$ has a nontrivial integer solution. We confirm that the proportion of varieties $V{\boldsymbol{a}}$ in $\mathbb{V}{P}_{d,n}(A)$, which are everywhere locally soluble, converges to a constant $c_P$ as $A\rightarrow \infty.$ In particular, if there exists $\boldsymbol{b}\in \mathbb{Z}N$ such that $P(\boldsymbol{b})=0$ and the variety $V_{\boldsymbol{b}}$ in $\mathbb{P}{n-1}$ admits a smooth $\mathbb{Q}$-rational point, the constant $c_P$ is positive.

Summary

We haven't generated a summary for this paper yet.