Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Estimation in RIS-Enabled mmWave Wireless Systems: A Variational Inference Approach (2308.13616v2)

Published 25 Aug 2023 in eess.SP and cs.LG

Abstract: Channel estimation in reconfigurable intelligent surfaces (RIS)-aided systems is crucial for optimal configuration of the RIS and various downstream tasks such as user localization. In RIS-aided systems, channel estimation involves estimating two channels for the user-RIS (UE-RIS) and RIS-base station (RIS-BS) links. In the literature, two approaches are proposed: (i) cascaded channel estimation where the two channels are collapsed into a single one and estimated using training signals at the BS, and (ii) separate channel estimation that estimates each channel separately either in a passive or semi-passive RIS setting. In this work, we study the separate channel estimation problem in a fully passive RIS-aided millimeter-wave (mmWave) single-user single-input multiple-output (SIMO) communication system. First, we adopt a variational-inference (VI) approach to jointly estimate the UE-RIS and RIS-BS instantaneous channel state information (I-CSI). In particular, auxiliary posterior distributions of the I-CSI are learned through the maximization of the evidence lower bound. However, estimating the I-CSI for both links in every coherence block results in a high signaling overhead to control the RIS in scenarios with highly mobile users. Thus, we extend our first approach to estimate the slow-varying statistical CSI of the UE-RIS link overcoming the highly variant I-CSI. Precisely, our second method estimates the I-CSI of RIS-BS channel and the UE-RIS channel covariance matrix (CCM) directly from the uplink training signals in a fully passive RIS-aided system. The simulation results demonstrate that using maximum a posteriori channel estimation using the auxiliary posteriors can provide a capacity that approaches the capacity with perfect CSI.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. F. Fredj, A. Feriani, A. Mezghani, and E. Hossain, “Variational inference-based channel estimation for reconfigurable intelligent surface-aided wireless systems,” in ICC 2023 - IEEE International Conference on Communications, 2023, pp. 3456–3461.
  2. W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems: Applications, trends, technologies, and open research problems,” IEEE network, vol. 34, no. 3, pp. 134–142, 2019.
  3. B. Zheng, C. You, W. Mei, and R. Zhang, “A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1035–1071, 2022.
  4. S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6g be?” Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.
  5. Q.-U.-A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini, “Intelligent reflecting surface assisted wireless communication: Modeling and channel estimation,” arXiv preprint arXiv:1906.02360, 2019.
  6. X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing with intelligent reflecting surface: Architecture and performance,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2070–2084, 2022.
  7. X. Pei, H. Yin, L. Tan, L. Cao, Z. Li, K. Wang, K. Zhang, and E. Björnson, “Ris-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8627–8640, 2021.
  8. Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE communications surveys & tutorials, vol. 23, no. 3, pp. 1546–1577, 2021.
  9. L. You, J. Xiong, D. W. K. Ng, C. Yuen, W. Wang, and X. Gao, “Energy efficiency and spectral efficiency tradeoff in ris-aided multiuser mimo uplink transmission,” IEEE Transactions on Signal Processing, vol. 69, pp. 1407–1421, 2020.
  10. P. Staat, H. Elders-Boll, M. Heinrichs, R. Kronberger, C. Zenger, and C. Paar, “Intelligent reflecting surface-assisted wireless key generation for low-entropy environments,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).   IEEE, 2021, pp. 745–751.
  11. M. Di Renzo, K. Ntontin, J. Song, F. H. Danufane, X. Qian, F. Lazarakis, J. De Rosny, D.-T. Phan-Huy, O. Simeone, R. Zhang et al., “Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison,” IEEE Open Journal of the Communications Society, vol. 1, pp. 798–807, 2020.
  12. S. Nandan and M. A. Rahiman, “Intelligent reflecting surface (irs) assisted mmwave wireless communication systems: A survey,” Journal of Communications, vol. 17, no. 9, 2022.
  13. H. Guo, C. Madapatha, B. Makki, B. Dortschy, L. Bao, M. Åström, and T. Svensson, “A comparison between network-controlled repeaters and reconfigurable intelligent surfaces,” arXiv preprint arXiv:2211.06974, 2022.
  14. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, 2019.
  15. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4157–4170, 2019.
  16. P. Wang, J. Fang, H. Duan, and H. Li, “Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems,” IEEE signal processing letters, vol. 27, pp. 905–909, 2020.
  17. B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface assisted multi-user ofdma: Channel estimation and training design,” IEEE Transactions on Wireless Communications, vol. 19, no. 12, pp. 8315–8329, 2020.
  18. K. Ardah, S. Gherekhloo, A. L. de Almeida, and M. Haardt, “Trice: A channel estimation framework for ris-aided millimeter-wave mimo systems,” IEEE signal processing letters, vol. 28, pp. 513–517, 2021.
  19. C. Liu, X. Liu, D. W. K. Ng, and J. Yuan, “Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 898–912, 2021.
  20. W. Shen, Z. Qin, and A. Nallanathan, “Deep learning for super-resolution channel estimation in reconfigurable intelligent surface aided systems,” IEEE Transactions on Communications, vol. 71, no. 3, pp. 1491–1503, 2023.
  21. S. Liu, Z. Gao, J. Zhang, M. Di Renzo, and M.-S. Alouini, “Deep denoising neural network assisted compressive channel estimation for mmwave intelligent reflecting surfaces,” IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 9223–9228, 2020.
  22. S. Zhang, S. Zhang, F. Gao, J. Ma, and O. A. Dobre, “Deep learning optimized sparse antenna activation for reconfigurable intelligent surface assisted communication,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 6691–6705, 2021.
  23. S. E. Zegrar, L. Afeef, and H. Arslan, “A general framework for ris-aided mmwave communication networks: Channel estimation and mobile user tracking,” arXiv preprint arXiv:2009.01180, 2020.
  24. S. Palmucci, A. Guerra, A. Abrardo, and D. Dardari, “Two-timescale joint precoding design and ris optimization for user tracking in near-field mimo systems,” IEEE Transactions on Signal Processing, 2023.
  25. G. T. de Araújo, A. L. De Almeida, and R. Boyer, “Channel estimation for intelligent reflecting surface assisted mimo systems: A tensor modeling approach,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 3, pp. 789–802, 2021.
  26. X. Hu, R. Zhang, and C. Zhong, “Semi-passive elements assisted channel estimation for intelligent reflecting surface-aided communications,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 1132–1142, 2021.
  27. I.-s. Kim, M. Bennis, J. Oh, J. Chung, and J. Choi, “Bayesian channel estimation for intelligent reflecting surface-aided mmwave massive mimo systems with semi-passive elements,” arXiv preprint arXiv:2206.06605, 2022.
  28. M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE journal on selected areas in communications, vol. 32, no. 6, pp. 1164–1179, 2014.
  29. M. He, J. Xu, W. Xu, H. Shen, N. Wang, and C. Zhao, “Ris-assisted quasi-static broad coverage for wideband mmwave massive mimo systems,” IEEE Transactions on Wireless Communications, vol. 22, no. 4, pp. 2551–2565, 2022.
  30. J. Xu, C. Yuen, C. Huang, N. Ul Hassan, G. C. Alexandropoulos, M. Di Renzo, and M. Debbah, “Reconfiguring wireless environments via intelligent surfaces for 6g: reflection, modulation, and security,” Science China Information Sciences, vol. 66, no. 3, p. 130304, 2023.
  31. Y. Han, W. Tang, S. Jin, C.-K. Wen, and X. Ma, “Large intelligent surface-assisted wireless communication exploiting statistical csi,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 8238–8242, 2019.
  32. M.-M. Zhao, Q. Wu, M.-J. Zhao, and R. Zhang, “Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 2–17, 2020.
  33. F. Yang, J.-B. Wang, H. Zhang, C. Chang, and J. Cheng, “Intelligent reflecting surface-assisted mmwave communication exploiting statistical csi,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).   IEEE, 2020, pp. 1–6.
  34. S. Park and R. W. Heath, “Spatial channel covariance estimation for mmwave hybrid mimo architecture,” in 2016 50th Asilomar Conference on Signals, Systems and Computers.   IEEE, 2016, pp. 1424–1428.
  35. H. Wang, J. Fang, H. Duan, and H. Li, “Spatial channel covariance estimation and two-timescale beamforming for irs-assisted millimeter wave systems,” IEEE Transactions on Wireless Communications, 2023.
  36. D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational approximation for bayesian inference,” IEEE Signal Processing Magazine, vol. 25, no. 6, pp. 131–146, 2008.
  37. D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for statisticians,” Journal of the American statistical Association, vol. 112, no. 518, pp. 859–877, 2017.
  38. C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in variational inference,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 8, pp. 2008–2026, 2018.
  39. Y. Miao, L. Yu, and P. Blunsom, “Neural variational inference for text processing,” in International conference on machine learning.   PMLR, 2016, pp. 1727–1736.
  40. V. D. P. Souto, R. D. Souza, B. F. Uchoa-Filho, A. Li, and Y. Li, “Beamforming optimization for intelligent reflecting surfaces without CSI,” IEEE Wireless Communications Letters, vol. 9, no. 9, pp. 1476–1480, 2020.
  41. S. Haghighatshoar and G. Caire, “Massive mimo channel subspace estimation from low-dimensional projections,” IEEE Transactions on Signal Processing, vol. 65, no. 2, pp. 303–318, 2016.
  42. M. Figurnov, S. Mohamed, and A. Mnih, “Implicit reparameterization gradients,” Advances in neural information processing systems, vol. 31, 2018.
  43. T. Lin, X. Yu, Y. Zhu, and R. Schober, “Channel estimation for irs-assisted millimeter-wave mimo systems: Sparsity-inspired approaches,” IEEE Transactions on Communications, vol. 70, no. 6, pp. 4078–4092, 2022.
  44. J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperparameter optimization for machine learning models based on bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, 2019.
  45. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  46. J. Xu, W. Xu, D. W. K. Ng, and A. L. Swindlehurst, “Secure communication for spatially sparse millimeter-wave massive mimo channels via hybrid precoding,” IEEE Transactions on Communications, vol. 68, no. 2, pp. 887–901, 2019.
  47. F. Fredj, Y. Al-Eryani, S. Maghsudi, M. Akrout, and E. Hossain, “Distributed beamforming techniques for cell-free wireless networks using deep reinforcement learning,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 1186–1201, 2022.

Summary

We haven't generated a summary for this paper yet.