Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is Deep Learning Network Necessary for Image Generation? (2308.13612v2)

Published 25 Aug 2023 in cs.CV

Abstract: Recently, images are considered samples from a high-dimensional distribution, and deep learning has become almost synonymous with image generation. However, is a deep learning network truly necessary for image generation? In this paper, we investigate the possibility of image generation without using a deep learning network, motivated by validating the assumption that images follow a high-dimensional distribution. Since images are assumed to be samples from such a distribution, we utilize the Gaussian Mixture Model (GMM) to describe it. In particular, we employ a recent distribution learning technique named as Monte-Carlo Marginalization to capture the parameters of the GMM based on image samples. Moreover, we also use the Singular Value Decomposition (SVD) for dimensionality reduction to decrease computational complexity. During our evaluation experiment, we first attempt to model the distribution of image samples directly to verify the assumption that images truly follow a distribution. We then use the SVD for dimensionality reduction. The principal components, rather than raw image data, are used for distribution learning. Compared to methods relying on deep learning networks, our approach is more explainable, and its performance is promising. Experiments show that our images have a lower FID value compared to those generated by variational auto-encoders, demonstrating the feasibility of image generation without deep learning networks.

Summary

We haven't generated a summary for this paper yet.