Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eigenvector Dreaming (2308.13445v1)

Published 9 Aug 2023 in cond-mat.dis-nn and cs.NE

Abstract: Among the performance-enhancing procedures for Hopfield-type networks that implement associative memory, Hebbian Unlearning (or dreaming) strikes for its simplicity and its clear biological interpretation. Yet, it does not easily lend itself to a clear analytical understanding. Here we show how Hebbian Unlearning can be effectively described in terms of a simple evolution of the spectrum and the eigenvectors of the coupling matrix. We use these ideas to design new dreaming algorithms that are effective from a computational point of view, and are analytically far more transparent than the original scheme.

Citations (7)

Summary

We haven't generated a summary for this paper yet.