Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CEIMVEN: An Approach of Cutting Edge Implementation of Modified Versions of EfficientNet (V1-V2) Architecture for Breast Cancer Detection and Classification from Ultrasound Images (2308.13356v3)

Published 25 Aug 2023 in eess.IV and cs.CV

Abstract: Undoubtedly breast cancer identifies itself as one of the most widespread and terrifying cancers across the globe. Millions of women are getting affected each year from it. Breast cancer remains the major one for being the reason of largest number of demise of women. In the recent time of research, Medical Image Computing and Processing has been playing a significant role for detecting and classifying breast cancers from ultrasound images and mammograms, along with the celestial touch of deep neural networks. In this research, we focused mostly on our rigorous implementations and iterative result analysis of different cutting-edge modified versions of EfficientNet architectures namely EfficientNet-V1 (b0-b7) and EfficientNet-V2 (b0-b3) with ultrasound image, named as CEIMVEN. We utilized transfer learning approach here for using the pre-trained models of EfficientNet versions. We activated the hyper-parameter tuning procedures, added fully connected layers, discarded the unprecedented outliers and recorded the accuracy results from our custom modified EfficientNet architectures. Our deep learning model training approach was related to both identifying the cancer affected areas with region of interest (ROI) techniques and multiple classifications (benign, malignant and normal). The approximate testing accuracies we got from the modified versions of EfficientNet-V1 (b0- 99.15%, b1- 98.58%, b2- 98.43%, b3- 98.01%, b4- 98.86%, b5- 97.72%, b6- 97.72%, b7- 98.72%) and EfficientNet-V2 (b0- 99.29%, b1- 99.01%, b2- 98.72%, b3- 99.43%) are showing very bright future and strong potentials of deep learning approach for the successful detection and classification of breast cancers from the ultrasound images at a very early stage. The code for this research is available here: https://github.com/ac005sheekar/CEIMVEN-Breast.

Citations (2)

Summary

We haven't generated a summary for this paper yet.