Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Reasoning for Physics Informed Neural Networks (2308.13222v2)

Published 25 Aug 2023 in physics.comp-ph, cs.LG, physics.flu-dyn, and stat.ML

Abstract: We present the application of the physics-informed neural network (PINN) approach in Bayesian formulation. We have adopted the Bayesian neural network framework to obtain posterior densities from Laplace approximation. For each model or fit, the evidence is computed, which is a measure that classifies the hypothesis. The optimal solution is the one with the highest value of evidence. We have proposed a modification of the Bayesian algorithm to obtain hyperparameters of the model. We have shown that within the Bayesian framework, one can obtain the relative weights between the boundary and equation contributions to the total loss. Presented method leads to predictions comparable to those obtained by sampling from the posterior distribution within the Hybrid Monte Carlo algorithm (HMC). We have solved heat, wave, and Burger's equations, and the results obtained are in agreement with the exact solutions, demonstrating the effectiveness of our approach. In Burger's equation problem, we have demonstrated that the framework can combine information from differential equations and potential measurements. All solutions are provided with uncertainties (induced by the model's parameter dependence) computed within the Bayesian framework.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com