Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predator-prey survival pressure is sufficient to evolve swarming behaviors (2308.12624v1)

Published 24 Aug 2023 in q-bio.PE, cs.MA, cs.NE, cs.RO, and physics.bio-ph

Abstract: The comprehension of how local interactions arise in global collective behavior is of utmost importance in both biological and physical research. Traditional agent-based models often rely on static rules that fail to capture the dynamic strategies of the biological world. Reinforcement learning has been proposed as a solution, but most previous methods adopt handcrafted reward functions that implicitly or explicitly encourage the emergence of swarming behaviors. In this study, we propose a minimal predator-prey coevolution framework based on mixed cooperative-competitive multiagent reinforcement learning, and adopt a reward function that is solely based on the fundamental survival pressure, that is, prey receive a reward of $-1$ if caught by predators while predators receive a reward of $+1$. Surprisingly, our analysis of this approach reveals an unexpectedly rich diversity of emergent behaviors for both prey and predators, including flocking and swirling behaviors for prey, as well as dispersion tactics, confusion, and marginal predation phenomena for predators. Overall, our study provides novel insights into the collective behavior of organisms and highlights the potential applications in swarm robotics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jianan Li (88 papers)
  2. Liang Li (297 papers)
  3. Shiyu Zhao (55 papers)
Citations (10)