2000 character limit reached
Virtual states in the coupled-channel problems with an improved complex scaling method (2308.12424v2)
Published 23 Aug 2023 in hep-ph, hep-lat, nucl-th, physics.atom-ph, and quant-ph
Abstract: We improve the complex scaling method (CSM) to obtain virtual states, which were previously challenging in the conventional CSM. Our approach solves the Schr\"odinger equation in the momentum space as an eigenvalue problem by choosing the flexible contours. It proves to be highly effective in identifying the poles across the different Riemann sheets in the multichannel scatterings. It is more straightforward and efficient than searching for the zeros of the Fredholm determinant of the Lippmann-Schwinger equation using the root-finding algorithms. This advancement significantly extends the capabilities of the CSM in accurately characterizing the resonances and virtual states in quantum systems.
- X.-K. Dong, F.-K. Guo, and B.-S. Zou, Explaining the Many Threshold Structures in the Heavy-Quark Hadron Spectrum, Phys. Rev. Lett. 126, 152001 (2021), arXiv:2011.14517 [hep-ph] .
- S. K. Choi et al. (Belle), Observation of a narrow charmonium-like state in exclusive B±→K±π+π−J/ψ→superscript𝐵plus-or-minussuperscript𝐾plus-or-minussuperscript𝜋superscript𝜋𝐽𝜓B^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psiitalic_B start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT → italic_K start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_J / italic_ψ decays, Phys. Rev. Lett. 91, 262001 (2003), arXiv:hep-ex/0309032 .
- R. Aaij et al. (LHCb), Observation of an exotic narrow doubly charmed tetraquark, Nature Phys. 18, 751 (2022a), arXiv:2109.01038 [hep-ex] .
- R. Aaij et al. (LHCb), Study of the doubly charmed tetraquark Tcc+superscriptsubscript𝑇𝑐𝑐T_{cc}^{+}italic_T start_POSTSUBSCRIPT italic_c italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, Nature Commun. 13, 3351 (2022b), arXiv:2109.01056 [hep-ex] .
- R. Aaij et al. (LHCb), Observation of J/ψp𝐽𝜓𝑝J/\psi pitalic_J / italic_ψ italic_p Resonances Consistent with Pentaquark States in Λb0→J/ψK−p→superscriptsubscriptΛ𝑏0𝐽𝜓superscript𝐾𝑝\Lambda_{b}^{0}\to J/\psi K^{-}proman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_J / italic_ψ italic_K start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_p Decays, Phys. Rev. Lett. 115, 072001 (2015), arXiv:1507.03414 [hep-ex] .
- R. Aaij et al. (LHCb), Observation of a J/ψ𝜓\psiitalic_ψΛΛ\Lambdaroman_Λ Resonance Consistent with a Strange Pentaquark Candidate in B-→J/ψ𝜓\psiitalic_ψΛΛ\Lambdaroman_Λp¯ Decays, Phys. Rev. Lett. 131, 031901 (2023), arXiv:2210.10346 [hep-ex] .
- F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv:1912.07030 [hep-ph] .
- H. W. Hammer, S. König, and U. van Kolck, Nuclear effective field theory: status and perspectives, Rev. Mod. Phys. 92, 025004 (2020), arXiv:1906.12122 [nucl-th] .
- H. W. Hammer, C. Ji, and D. R. Phillips, Effective field theory description of halo nuclei, J. Phys. G 44, 103002 (2017), arXiv:1702.08605 [nucl-th] .
- J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body schroedinger hamiltonians, Commun. Math. Phys. 22, 269 (1971).
- E. Balslev and J. M. Combes, Spectral properties of many-body schroedinger operators with dilatation-analytic interactions, Commun. Math. Phys. 22, 280 (1971).
- A. Dote, T. Inoue, and T. Myo, Comprehensive application of a coupled-channel complex scaling method to the K¯N−πY¯𝐾𝑁𝜋𝑌\bar{K}N-\pi Yover¯ start_ARG italic_K end_ARG italic_N - italic_π italic_Y system, Nucl. Phys. A 912, 66 (2013), arXiv:1207.5279 [nucl-th] .
- G. Papadimitriou and J. P. Vary, Nucleon-nucleon scattering with the Complex Scaling Method and realistic interactions, Phys. Rev. C 91, 021001(R) (2015), arXiv:1412.0071 [nucl-th] .
- S. Maeda, M. Oka, and Y.-R. Liu, Resonance states in the YcNsubscript𝑌𝑐𝑁Y_{c}Nitalic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_N potential model, Phys. Rev. C 98, 035203 (2018), arXiv:1803.11349 [nucl-th] .
- T. Myo and K. Kato, Complex scaling: Physics of unbound light nuclei and perspective, PTEP 2020, 12A101 (2020), arXiv:2007.12172 [nucl-th] .
- G. Yang, J. Ping, and J. Segovia, Fully charm and bottom pentaquarks in a lattice-QCD inspired quark model, Phys. Rev. D 106, 014005 (2022), arXiv:2205.11548 [hep-ph] .
- G.-J. Wang, Q. Meng, and M. Oka, S-wave fully charmed tetraquark resonant states, Phys. Rev. D 106, 096005 (2022), arXiv:2208.07292 [hep-ph] .
- J.-B. Cheng, Z.-Y. Lin, and S.-L. Zhu, Double-charm tetraquark under the complex scaling method, Phys. Rev. D 106, 016012 (2022), arXiv:2205.13354 [hep-ph] .
- Z.-Y. Lin, J.-B. Cheng, and S.-L. Zhu, Tcc+superscriptsubscript𝑇𝑐𝑐T_{cc}^{+}italic_T start_POSTSUBSCRIPT italic_c italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and X(3872)𝑋3872X(3872)italic_X ( 3872 ) with the complex scaling method and DD(D¯)π𝐷𝐷¯𝐷𝜋DD(\bar{D})\piitalic_D italic_D ( over¯ start_ARG italic_D end_ARG ) italic_π three-body effect, (2022), arXiv:2205.14628 [hep-ph] .
- R. G. Newton, Analytic Properties of Radial Wave Functions, J. Math. Phys. 1, 319 (1960).
- W. J. Romo, Inner product for resonant states and shell-model applications, Nucl. Phys. A 116, 617 (1968).
- B. G. Giraud and K. Katō, Complex-scaled spectrum completeness for pedestrians, Annals Phys. 308, 115 (2003).
- B. G. Giraud, K. Kato, and A. Ohnishi, Complex scaled spectrum completeness for coupled channels, J. Phys. A 37, 11575 (2004), arXiv:nucl-th/0503049 .
- T. Berggren, On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes, Nucl. Phys. A 109, 265 (1968).
- P. Lind, Completeness relations and resonant state expansions, Phys. Rev. C 47, 1903 (1993).
- L. Meng, B. Wang, and S.-L. Zhu, Predicting the Ds(*)Ds(*)superscriptsubscript𝐷𝑠superscriptsubscript𝐷𝑠D_{s}^{(*)}D_{s}^{(*)}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT bound states as the partners of X(3872), Sci. Bull. 66, 1288 (2021a), arXiv:2012.09813 [hep-ph] .
- S. K. Adhikari, A. C. Fonseca, and L. Tomio, Method for resonances and virtual states: Efimov virtual states, Phys. Rev. C 26, 77 (1982).
- B. V. Carlson, T. Frederico, and F. B. Guimaraes, S-10 pairing correlations in relativistic nuclear matter and the two-nucleon virtual state, Phys. Rev. C 56, 3097 (1997).
- S. B. Borzakov, Nucleon-Nucleon Interaction ib the Singlet State at Low Energy, (2021), arXiv:2105.10286 [nucl-ex] .
- C. Deng and S.-L. Zhu, Tcc+ and its partners, Phys. Rev. D 105, 054015 (2022), arXiv:2112.12472 [hep-ph] .
- B. Wang and L. Meng, Revisiting the DD* chiral interactions with the local momentum-space regularization up to the third order and the nature of Tcc+, Phys. Rev. D 107, 094002 (2023), arXiv:2212.08447 [hep-ph] .