Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The BNS invariants of the braid groups and pure braid groups of some surfaces (2308.12377v1)

Published 23 Aug 2023 in math.AT

Abstract: We compute and explicitly describe the Bieri-Neumann-Strebel invariants $\Sigma1$ for the full and pure braid groups of the sphere $\mathbb{S}2$, the real projective plane $\mathbb{R}P2$ and specially the torus $\mathbb{T}$ and the Klein bottle $\mathbb{K}$. In order to do this for $M=\mathbb T$ or $M=\mathbb K$, and $n \geq 2$, we use the $n{th}$-configuration space of $M$ to show that the action by homeomorphisms of the group $Out(P_n(M))$ on the character sphere $S(P_n(M))$ contains certain permutation of coordinates, under which $\Sigma1(P_n(\mathbb T))c$ and $\Sigma1(P_n(\mathbb K))c$ are invariant. Furthermore, $\Sigma1(P_n(\mathbb T))c$ and $\Sigma1(P_n(\mathbb{S}2))c$ (the latter with $n \geq 5$) are finite unions of pairwise disjoint circles, and $\Sigma1(P_n(\mathbb K))c$ is finite. This last fact implies that there is a normal finite index subgroup $H \leq Aut(P_n(\mathbb K))$ such that the Reidemeister number $R(\varphi)$ is infinite for every $\varphi \in H$.

Summary

We haven't generated a summary for this paper yet.