Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supercritical Liouville quantum gravity and CLE$_4$ (2308.11832v4)

Published 22 Aug 2023 in math.PR, math-ph, and math.MP

Abstract: We establish the first relationship between Schramm-Loewner evolution (SLE) and Liouville quantum gravity (LQG) in the supercritical (a.k.a. strongly coupled) phase, which corresponds to central charge values $\mathbf c_{\mathrm L} \in (1,25)$ or equivalently to complex values of $\gamma$ with $|\gamma|=2$. More precisely, we introduce a canonical supercritical LQG surface with the topology of the disk. We then show that for each $\mathbf c_{\mathrm L} \in (1,25)$ there is a coupling of this LQG surface with a conformal loop ensemble with parameter $\kappa=4$ (CLE$_4$) wherein the LQG surfaces parametrized by the regions enclosed by the CLE$_4$ loops are conditionally independent supercritical LQG disks given their boundary lengths. In this coupling, the CLE$_4$ is neither determined by nor independent from the LQG. Guided by our coupling result, we exhibit a combinatorially natural family of loop-decorated random planar maps whose scaling limit we conjecture to be the supercritical LQG disk coupled to CLE$_4$. We include a substantial list of open problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (96)
  1. E. Aïdékon and W. Da Silva. Growth-fragmentation process embedded in a planar Brownian excursion. Probab. Theory Related Fields, 183(1-2):125–166, 2022, 2005.06372. MR4421172
  2. M. Ang and E. Gwynne. Critical Liouville quantum gravity and CLE4. ArXiv e-prints, August 2023, 2308.11835.
  3. M. Ang and E. Gwynne. Cutting γ𝛾\gammaitalic_γ-Liouville quantum gravity by Schramm-Loewner evolution for κ∉{γ2,16/γ2}𝜅superscript𝛾216superscript𝛾2\kappa\notin\{\gamma^{2},16/\gamma^{2}\}italic_κ ∉ { italic_γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 16 / italic_γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT }. ArXiv e-prints, October 2023, 2310.11455.
  4. Mating of trees for critical Liouville quantum gravity. ArXiv e-prints, September 2021, 2109.00275.
  5. Integrability of SLE via conformal welding of random surfaces. Communications in Pure and Applied Mathematics, to appear, 2021, 2104.09477.
  6. The First Passage Sets of the 2D Gaussian Free Field: Convergence and Isomorphisms. Comm. Math. Phys., 375(3):1885–1929, 2020, 1805.09204. MR4091511
  7. J. Ambjørn. Remarks about c>1𝑐1c>1italic_c > 1 and D>2𝐷2D>2italic_D > 2. Teoret. Mat. Fiz., 98(3):326–336, 1994. MR1304731
  8. Brownian loops and the central charge of a Liouville random surface. Ann. Probab., 50(4):1322–1358, 2022, 2005.11845. MR4420421
  9. Critical Liouville measure as a limit of subcritical measures. Electron. Commun. Probab., 24:Paper No. 18, 16, 2019, 1802.08433. MR3933042
  10. FZZ formula of boundary Liouville CFT via conformal welding. Journal of the European Mathematical Society, to appear, 2021, 2104.09478.
  11. The moduli of annuli in random conformal geometry. ArXiv e-prints, March 2022, 2203.12398.
  12. Derivation of all structure constants for boundary Liouville CFT. ArXiv e-prints, May 2023, 2305.18266.
  13. J. Aru and A. Sepúlveda. Two-valued local sets of the 2D continuum Gaussian free field: connectivity, labels, and induced metrics. Electron. J. Probab., 23:Paper No. 61, 35, 2018, 1801.03828. MR3827968
  14. M. Ang and X. Sun. Integrability of the conformal loop ensemble. ArXiv e-prints, July 2021, 2107.01788.
  15. On bounded-type thin local sets of the two-dimensional Gaussian free field. J. Inst. Math. Jussieu, 18(3):591–618, 2019, 1603.03362. MR3936643
  16. Martingales in self-similar growth-fragmentations and their connections with random planar maps. Probab. Theory Related Fields, 172(3-4):663–724, 2018, 1605.00581. MR3877545
  17. A recursive approach to the O(n) model on random maps via nested loops. Journal of Physics A Mathematical General, 45(4):045002, February 2012, 1106.0153.
  18. More on the O⁢(n)𝑂𝑛O(n)italic_O ( italic_n ) model on random maps via nested loops: loops with bending energy. J. Phys. A, 45(27):275206, 32, 2012, 1202.5521. MR2947230
  19. Infinite random planar maps related to Cauchy processes. J. Éc. polytech. Math., 5:749–791, 2018, 1704.05297. MR3877166
  20. N. Berestycki. An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab., 22:Paper No. 27, 12, 2017, 1506.09113. MR3652040
  21. A. Bilal and J.-L. Gervais. New critical dimensions for string theories. Nuclear Phys. B, 284(2):397–422, 1987. MR880654
  22. Scaling limits of planar maps under the Smith embedding. ArXiv e-prints, June 2023, 2306.02988.
  23. E. Brézin and S. Hikami. A naive matrix-model approach to 2D quantum gravity coupled to matter of arbitrary central charge. Physics Letters B, 283:203–208, June 1992, hep-th/9204018.
  24. J. Bettinelli and G. Miermont. Compact Brownian surfaces I: Brownian disks. Probab. Theory Related Fields, 167(3-4):555–614, 2017, 1507.08776. MR3627425
  25. J. Borga. The Skew Brownian permuton: a new universality class for random constrained permutations. Proc. Lond. Math. Soc. (3), 126(6):1842–1883, 2023, 2112.00156.
  26. N. Berestycki and E. Powell. Gaussian free field and Liouville quantum gravity. Cambridge University Press, 2024, 2404.16642. To appear.
  27. The dissection of rectangles into squares. Duke Mathematical Journal, 7(1):312–340, 1940.
  28. The perimeter cascade in critical Boltzmann quadrangulations decorated by an O⁢(n)𝑂𝑛O(n)italic_O ( italic_n ) loop model. Ann. Inst. Henri Poincaré D, 7(4):535–584, 2020, 1702.06916. MR4182775
  29. B. Cerclé. Unit boundary length quantum disk: a study of two different perspectives and their equivalence. ESAIM Probab. Stat., 25:433–459, 2021, 1912.08012. MR4338790
  30. S. Chatterjee. Rigorous solution of strongly coupled S⁢O⁢(N)𝑆𝑂𝑁SO(N)italic_S italic_O ( italic_N ) lattice gauge theory in the large N𝑁Nitalic_N limit. Comm. Math. Phys., 366(1):203–268, 2019, 1502.07719. MR3919447
  31. Random surfaces and lattice Yang-Mills. ArXiv e-prints, July 2023, 2307.06790.
  32. F. David. Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A, 3(17):1651–1656, 1988.
  33. F. David. A scenario for the c>1𝑐1c>1italic_c > 1 barrier in non-critical bosonic strings. Nuclear Physics B, 487:633–649, February 1997, hep-th/9610037.
  34. Tightness of Liouville first passage percolation for γ∈(0,2)𝛾02\gamma\in(0,2)italic_γ ∈ ( 0 , 2 ). Publ. Math. Inst. Hautes Études Sci., 132:353–403, 2020, 1904.08021. MR4179836
  35. 2222D gravity and random matrices. Phys. Rep., 254(1-2):133, 1995, hep-th/9306153. MR1320471
  36. J. Ding and E. Gwynne. The critical Liouville quantum gravity metric induces the Euclidean topology. Frontiers of Mathematics, to appear, 2021, 2108.12067.
  37. J. Ding and E. Gwynne. Tightness of supercritical Liouville first passage percolation. J. Eur. Math. Soc. (JEMS), 25(10):3833–3911, 2023, 2005.13576. MR4634685
  38. J. Ding and E. Gwynne. Uniqueness of the critical and supercritical Liouville quantum gravity metrics. Proc. Lond. Math. Soc. (3), 126(1):216–333, 2023, 2110.00177. MR4535021
  39. J. Distler and H. Kawai. Conformal field theory and 2D quantum gravity. Nucl.Phys. B, 321(2):509–527, 1989.
  40. Liouville quantum gravity on the Riemann sphere. Comm. Math. Phys., 342(3):869–907, 2016, 1410.7318. MR3465434
  41. Liouville quantum gravity as a mating of trees. Astérisque, (427):viii+257, 2021, 1409.7055. MR4340069
  42. Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys., 330(1):283–330, 2014, 1212.0529. MR3215583
  43. B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math., 185(2):333–393, 2011, 1206.0212. MR2819163 (2012f:81251)
  44. Strongly coupled quantum discrete Liouville theory: II. Geometric interpretation of the evolution operator. Journal of Physics A Mathematical General, 35:4043–4048, May 2002, hep-th/0201049.
  45. Strongly Coupled Quantum Discrete Liouville Theory.I: Algebraic Approach and Duality. Communications in Mathematical Physics, 219:199–219, 2001, hep-th/0006156.
  46. J.-L. Gervais. Solving the strongly coupled 2222D gravity. I. Unitary truncation and quantum group structure. Comm. Math. Phys., 138(2):301–338, 1991. MR1108048
  47. Liouville quantum gravity with matter central charge in (1, 25): a probabilistic approach. Comm. Math. Phys., 376(2):1573–1625, 2020, 1903.09111. MR4103975
  48. A mating-of-trees approach for graph distances in random planar maps. Probab. Theory Related Fields, 177(3-4):1043–1102, 2020, 1711.00723. MR4126936
  49. Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense. Electron. J. Probab., 26:Paper No. 94, 58, 2021, 1905.06757. MR4278605
  50. Mating of trees for random planar maps and Liouville quantum gravity: a survey. In Topics in statistical mechanics, volume 59 of Panor. Synthèses, pages 41–120. Soc. Math. France, Paris, 2023, 1910.04713. MR4619311
  51. Conformal bootstrap in Liouville Theory. ArXiv e-prints, May 2020, 2005.11530.
  52. Lectures on 2-D gravity and 2-D string theory. In Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles, pages 277–469, 10 1993, hep-th/9304011.
  53. E. Gwynne and J. Miller. Existence and uniqueness of the Liouville quantum gravity metric for γ∈(0,2)𝛾02\gamma\in(0,2)italic_γ ∈ ( 0 , 2 ). Invent. Math., 223(1):213–333, 2021, 1905.00383. MR4199443
  54. The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity. Ann. Probab., 49(4):1677–1717, 2021, 1705.11161.
  55. J.-L. Gervais and A. Neveu. Locality in strong coupling Liouville field theory and string models for dimensions 7,137137,137 , 13 and 19191919. Phys. Lett. B, 151(3-4):271–274, 1985. MR785136
  56. E. Gwynne and J. Pfeffer. Loewner evolution driven by complex Brownian motion (with simulations by Minjae Park). Ann. Probab., to appear, 2022, 2203.07313.
  57. From weak to strong coupling in two-dimensional gravity. Phys. Lett. B, 338(4):437–447, 1994, hep-th/9408076. MR1302411
  58. Solving the strongly coupled 2222D gravity. II. Fractional-spin operators and topological three-point functions. Nuclear Phys. B, 426(1):140–186, 1994. MR1293686
  59. Solving the strongly coupled 2222D gravity. III. String susceptibility and topological N𝑁Nitalic_N-point functions. Nuclear Phys. B, 478(1-2):245–269, 1996, hep-th/9605105. MR1420161
  60. Polyakov’s formulation of 2⁢d2𝑑2d2 italic_d bosonic string theory. Publ. Math. Inst. Hautes Études Sci., 130:111–185, 2019, 1607.08467. MR4028515
  61. E. Gwynne. Random surfaces and Liouville quantum gravity. Notices Amer. Math. Soc., 67(4):484–491, 2020, 1908.05573. MR4186266
  62. Thick points of the Gaussian free field. Ann. Probab., 38(2):896–926, 2010, 0902.3842. MR2642894 (2011c:60117)
  63. N. Holden and E. Powell. Conformal welding for critical Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab. Stat., 57(3):1229–1254, 2021, 1812.11808. MR4291446
  64. Liouville quantum gravity on the unit disk. Ann. Inst. Henri Poincaré Probab. Stat., 54(3):1694–1730, 2018, 1502.04343. MR3825895
  65. N. Holden and X. Sun. Convergence of uniform triangulations under the Cardy embedding. Acta Math., 230(1):93–203, 2023, 1905.13207. MR4567714
  66. J.-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–150, 1985. MR829798 (88h:60099a)
  67. I. K. Kostov. Boundary ground ring in 2D string theory. Nuclear Physics B, 689(1):3–36, 2004, hep-th/0312301.
  68. Integrability of Liouville theory: proof of the DOZZ formula. Ann. of Math. (2), 191(1):81–166, 2020, 1707.08785. MR4060417
  69. J.-F. Le Gall and G. Miermont. Scaling limits of random planar maps with large faces. Ann. Probab., 39(1):1–69, 2011, 0907.3262. MR2778796
  70. M. Magee and D. Puder. Matrix group integrals, surfaces, and mapping class groups I: 𝒰⁢(n)𝒰𝑛\mathcal{U}(n)caligraphic_U ( italic_n ). Invent. Math., 218(2):341–411, 2019, 1802.04862. MR4011702
  71. J. Miller and S. Sheffield. CLE(4) and the Gaussian free field. Unpublished.
  72. J. Miller and S. Sheffield. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Related Fields, 169(3-4):729–869, 2017, 1302.4738. MR3719057
  73. J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding. Ann. Probab., 49(6):2732–2829, 2021, 1605.03563. MR4348679
  74. J. Miller and L. Schoug. Existence and uniqueness of the conformally covariant volume measure on conformal loop ensembles. ArXiv e-prints, January 2022, 2201.01748.
  75. Simple conformal loop ensembles on Liouville quantum gravity. Ann. Probab., 50(3):905–949, 2022, 2002.05698. MR4413208
  76. J. Pfeffer. Weak Liouville quantum gravity metrics with matter central charge 𝐜∈(−∞,25)𝐜25\mathbf{c}\in(-\infty,25)bold_c ∈ ( - ∞ , 25 ). ArXiv e-prints, April 2021, 2104.04020.
  77. A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B, 103(3):207–210, 1981. MR623209 (84h:81093a)
  78. E. Powell. Critical Gaussian multiplicative chaos: a review. Markov Process. Related Fields, 27(4):557–506, 2021, 2006.13767. MR4396197
  79. W. Qian and W. Werner. Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines. Comm. Math. Phys., 361(1):53–80, 2018, 1703.04350. MR3825935
  80. S. Ribault. Conformal field theory on the plane. ArXiv e-prints, June 2014, 1406.4290.
  81. R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat., 15:358–371, 2011, 0807.1036. MR2870520
  82. R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11:315–392, 2014, 1305.6221. MR3274356
  83. G. Remy and T. Zhu. Integrability of boundary Liouville conformal field theory. Comm. Math. Phys., 395(1):179–268, 2022, 2002.05625. MR4483018
  84. N. Seiberg. Notes on quantum Liouville theory and quantum gravity. Number 102, pages 319–349 (1991). 1990. Common trends in mathematics and quantum field theories (Kyoto, 1990). MR1182173
  85. S. Sheffield. Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139(3-4):521–541, 2007, math/0312099. MR2322706 (2008d:60120)
  86. S. Sheffield. Exploration trees and conformal loop ensembles. Duke Math. J., 147(1):79–129, 2009, math/0609167. MR2494457 (2010g:60184)
  87. S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab., 44(5):3474–3545, 2016, 1012.4797. MR3551203
  88. S. Sheffield. What is a random surface? ArXiv e-prints, March 2022, 2203.02470.
  89. O. Schramm and S. Sheffield. A contour line of the continuum Gaussian free field. Probab. Theory Related Fields, 157(1-2):47–80, 2013, 1008.2447. MR3101840
  90. K. Stephenson. Circle packing: a mathematical tale. Notices of the AMS, 50(11):1376–1388, 2003.
  91. T. Suzuki. A note on quantum Liouville theory via the quantum group. An approach to strong coupling Liouville theory. Nuclear Phys. B, 492(3):717–742, 1997, hep-th/9611181. MR1456122
  92. S. Sheffield and W. Werner. Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. of Math. (2), 176(3):1827–1917, 2012, 1006.2374. MR2979861
  93. S. Sheffield and M. Wang. Field-measure correspondence in Liouville quantum gravity almost surely commutes with all conformal maps simultaneously. ArXiv e-prints, May 2016, 1605.06171.
  94. H. Verlinde. Conformal field theory, two-dimensional quantum gravity and quantization of Teichmüller space. Nuclear Phys. B, 337(3):652–680, 1990. MR1057726
  95. E. Witten. Ground ring of two-dimensional string theory. Nuclear physics B, 373(1):187–213, 1992, hep-th/9108004.
  96. W. Werner and E. Powell. Lecture notes on the Gaussian free field, volume 28 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2021, 2004.04720. MR4466634
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets