Supercritical Liouville quantum gravity and CLE$_4$ (2308.11832v4)
Abstract: We establish the first relationship between Schramm-Loewner evolution (SLE) and Liouville quantum gravity (LQG) in the supercritical (a.k.a. strongly coupled) phase, which corresponds to central charge values $\mathbf c_{\mathrm L} \in (1,25)$ or equivalently to complex values of $\gamma$ with $|\gamma|=2$. More precisely, we introduce a canonical supercritical LQG surface with the topology of the disk. We then show that for each $\mathbf c_{\mathrm L} \in (1,25)$ there is a coupling of this LQG surface with a conformal loop ensemble with parameter $\kappa=4$ (CLE$_4$) wherein the LQG surfaces parametrized by the regions enclosed by the CLE$_4$ loops are conditionally independent supercritical LQG disks given their boundary lengths. In this coupling, the CLE$_4$ is neither determined by nor independent from the LQG. Guided by our coupling result, we exhibit a combinatorially natural family of loop-decorated random planar maps whose scaling limit we conjecture to be the supercritical LQG disk coupled to CLE$_4$. We include a substantial list of open problems.
- E. Aïdékon and W. Da Silva. Growth-fragmentation process embedded in a planar Brownian excursion. Probab. Theory Related Fields, 183(1-2):125–166, 2022, 2005.06372. MR4421172
- M. Ang and E. Gwynne. Critical Liouville quantum gravity and CLE4. ArXiv e-prints, August 2023, 2308.11835.
- M. Ang and E. Gwynne. Cutting γ𝛾\gammaitalic_γ-Liouville quantum gravity by Schramm-Loewner evolution for κ∉{γ2,16/γ2}𝜅superscript𝛾216superscript𝛾2\kappa\notin\{\gamma^{2},16/\gamma^{2}\}italic_κ ∉ { italic_γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 16 / italic_γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT }. ArXiv e-prints, October 2023, 2310.11455.
- Mating of trees for critical Liouville quantum gravity. ArXiv e-prints, September 2021, 2109.00275.
- Integrability of SLE via conformal welding of random surfaces. Communications in Pure and Applied Mathematics, to appear, 2021, 2104.09477.
- The First Passage Sets of the 2D Gaussian Free Field: Convergence and Isomorphisms. Comm. Math. Phys., 375(3):1885–1929, 2020, 1805.09204. MR4091511
- J. Ambjørn. Remarks about c>1𝑐1c>1italic_c > 1 and D>2𝐷2D>2italic_D > 2. Teoret. Mat. Fiz., 98(3):326–336, 1994. MR1304731
- Brownian loops and the central charge of a Liouville random surface. Ann. Probab., 50(4):1322–1358, 2022, 2005.11845. MR4420421
- Critical Liouville measure as a limit of subcritical measures. Electron. Commun. Probab., 24:Paper No. 18, 16, 2019, 1802.08433. MR3933042
- FZZ formula of boundary Liouville CFT via conformal welding. Journal of the European Mathematical Society, to appear, 2021, 2104.09478.
- The moduli of annuli in random conformal geometry. ArXiv e-prints, March 2022, 2203.12398.
- Derivation of all structure constants for boundary Liouville CFT. ArXiv e-prints, May 2023, 2305.18266.
- J. Aru and A. Sepúlveda. Two-valued local sets of the 2D continuum Gaussian free field: connectivity, labels, and induced metrics. Electron. J. Probab., 23:Paper No. 61, 35, 2018, 1801.03828. MR3827968
- M. Ang and X. Sun. Integrability of the conformal loop ensemble. ArXiv e-prints, July 2021, 2107.01788.
- On bounded-type thin local sets of the two-dimensional Gaussian free field. J. Inst. Math. Jussieu, 18(3):591–618, 2019, 1603.03362. MR3936643
- Martingales in self-similar growth-fragmentations and their connections with random planar maps. Probab. Theory Related Fields, 172(3-4):663–724, 2018, 1605.00581. MR3877545
- A recursive approach to the O(n) model on random maps via nested loops. Journal of Physics A Mathematical General, 45(4):045002, February 2012, 1106.0153.
- More on the O(n)𝑂𝑛O(n)italic_O ( italic_n ) model on random maps via nested loops: loops with bending energy. J. Phys. A, 45(27):275206, 32, 2012, 1202.5521. MR2947230
- Infinite random planar maps related to Cauchy processes. J. Éc. polytech. Math., 5:749–791, 2018, 1704.05297. MR3877166
- N. Berestycki. An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab., 22:Paper No. 27, 12, 2017, 1506.09113. MR3652040
- A. Bilal and J.-L. Gervais. New critical dimensions for string theories. Nuclear Phys. B, 284(2):397–422, 1987. MR880654
- Scaling limits of planar maps under the Smith embedding. ArXiv e-prints, June 2023, 2306.02988.
- E. Brézin and S. Hikami. A naive matrix-model approach to 2D quantum gravity coupled to matter of arbitrary central charge. Physics Letters B, 283:203–208, June 1992, hep-th/9204018.
- J. Bettinelli and G. Miermont. Compact Brownian surfaces I: Brownian disks. Probab. Theory Related Fields, 167(3-4):555–614, 2017, 1507.08776. MR3627425
- J. Borga. The Skew Brownian permuton: a new universality class for random constrained permutations. Proc. Lond. Math. Soc. (3), 126(6):1842–1883, 2023, 2112.00156.
- N. Berestycki and E. Powell. Gaussian free field and Liouville quantum gravity. Cambridge University Press, 2024, 2404.16642. To appear.
- The dissection of rectangles into squares. Duke Mathematical Journal, 7(1):312–340, 1940.
- The perimeter cascade in critical Boltzmann quadrangulations decorated by an O(n)𝑂𝑛O(n)italic_O ( italic_n ) loop model. Ann. Inst. Henri Poincaré D, 7(4):535–584, 2020, 1702.06916. MR4182775
- B. Cerclé. Unit boundary length quantum disk: a study of two different perspectives and their equivalence. ESAIM Probab. Stat., 25:433–459, 2021, 1912.08012. MR4338790
- S. Chatterjee. Rigorous solution of strongly coupled SO(N)𝑆𝑂𝑁SO(N)italic_S italic_O ( italic_N ) lattice gauge theory in the large N𝑁Nitalic_N limit. Comm. Math. Phys., 366(1):203–268, 2019, 1502.07719. MR3919447
- Random surfaces and lattice Yang-Mills. ArXiv e-prints, July 2023, 2307.06790.
- F. David. Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A, 3(17):1651–1656, 1988.
- F. David. A scenario for the c>1𝑐1c>1italic_c > 1 barrier in non-critical bosonic strings. Nuclear Physics B, 487:633–649, February 1997, hep-th/9610037.
- Tightness of Liouville first passage percolation for γ∈(0,2)𝛾02\gamma\in(0,2)italic_γ ∈ ( 0 , 2 ). Publ. Math. Inst. Hautes Études Sci., 132:353–403, 2020, 1904.08021. MR4179836
- 2222D gravity and random matrices. Phys. Rep., 254(1-2):133, 1995, hep-th/9306153. MR1320471
- J. Ding and E. Gwynne. The critical Liouville quantum gravity metric induces the Euclidean topology. Frontiers of Mathematics, to appear, 2021, 2108.12067.
- J. Ding and E. Gwynne. Tightness of supercritical Liouville first passage percolation. J. Eur. Math. Soc. (JEMS), 25(10):3833–3911, 2023, 2005.13576. MR4634685
- J. Ding and E. Gwynne. Uniqueness of the critical and supercritical Liouville quantum gravity metrics. Proc. Lond. Math. Soc. (3), 126(1):216–333, 2023, 2110.00177. MR4535021
- J. Distler and H. Kawai. Conformal field theory and 2D quantum gravity. Nucl.Phys. B, 321(2):509–527, 1989.
- Liouville quantum gravity on the Riemann sphere. Comm. Math. Phys., 342(3):869–907, 2016, 1410.7318. MR3465434
- Liouville quantum gravity as a mating of trees. Astérisque, (427):viii+257, 2021, 1409.7055. MR4340069
- Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys., 330(1):283–330, 2014, 1212.0529. MR3215583
- B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math., 185(2):333–393, 2011, 1206.0212. MR2819163 (2012f:81251)
- Strongly coupled quantum discrete Liouville theory: II. Geometric interpretation of the evolution operator. Journal of Physics A Mathematical General, 35:4043–4048, May 2002, hep-th/0201049.
- Strongly Coupled Quantum Discrete Liouville Theory.I: Algebraic Approach and Duality. Communications in Mathematical Physics, 219:199–219, 2001, hep-th/0006156.
- J.-L. Gervais. Solving the strongly coupled 2222D gravity. I. Unitary truncation and quantum group structure. Comm. Math. Phys., 138(2):301–338, 1991. MR1108048
- Liouville quantum gravity with matter central charge in (1, 25): a probabilistic approach. Comm. Math. Phys., 376(2):1573–1625, 2020, 1903.09111. MR4103975
- A mating-of-trees approach for graph distances in random planar maps. Probab. Theory Related Fields, 177(3-4):1043–1102, 2020, 1711.00723. MR4126936
- Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense. Electron. J. Probab., 26:Paper No. 94, 58, 2021, 1905.06757. MR4278605
- Mating of trees for random planar maps and Liouville quantum gravity: a survey. In Topics in statistical mechanics, volume 59 of Panor. Synthèses, pages 41–120. Soc. Math. France, Paris, 2023, 1910.04713. MR4619311
- Conformal bootstrap in Liouville Theory. ArXiv e-prints, May 2020, 2005.11530.
- Lectures on 2-D gravity and 2-D string theory. In Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles, pages 277–469, 10 1993, hep-th/9304011.
- E. Gwynne and J. Miller. Existence and uniqueness of the Liouville quantum gravity metric for γ∈(0,2)𝛾02\gamma\in(0,2)italic_γ ∈ ( 0 , 2 ). Invent. Math., 223(1):213–333, 2021, 1905.00383. MR4199443
- The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity. Ann. Probab., 49(4):1677–1717, 2021, 1705.11161.
- J.-L. Gervais and A. Neveu. Locality in strong coupling Liouville field theory and string models for dimensions 7,137137,137 , 13 and 19191919. Phys. Lett. B, 151(3-4):271–274, 1985. MR785136
- E. Gwynne and J. Pfeffer. Loewner evolution driven by complex Brownian motion (with simulations by Minjae Park). Ann. Probab., to appear, 2022, 2203.07313.
- From weak to strong coupling in two-dimensional gravity. Phys. Lett. B, 338(4):437–447, 1994, hep-th/9408076. MR1302411
- Solving the strongly coupled 2222D gravity. II. Fractional-spin operators and topological three-point functions. Nuclear Phys. B, 426(1):140–186, 1994. MR1293686
- Solving the strongly coupled 2222D gravity. III. String susceptibility and topological N𝑁Nitalic_N-point functions. Nuclear Phys. B, 478(1-2):245–269, 1996, hep-th/9605105. MR1420161
- Polyakov’s formulation of 2d2𝑑2d2 italic_d bosonic string theory. Publ. Math. Inst. Hautes Études Sci., 130:111–185, 2019, 1607.08467. MR4028515
- E. Gwynne. Random surfaces and Liouville quantum gravity. Notices Amer. Math. Soc., 67(4):484–491, 2020, 1908.05573. MR4186266
- Thick points of the Gaussian free field. Ann. Probab., 38(2):896–926, 2010, 0902.3842. MR2642894 (2011c:60117)
- N. Holden and E. Powell. Conformal welding for critical Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab. Stat., 57(3):1229–1254, 2021, 1812.11808. MR4291446
- Liouville quantum gravity on the unit disk. Ann. Inst. Henri Poincaré Probab. Stat., 54(3):1694–1730, 2018, 1502.04343. MR3825895
- N. Holden and X. Sun. Convergence of uniform triangulations under the Cardy embedding. Acta Math., 230(1):93–203, 2023, 1905.13207. MR4567714
- J.-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–150, 1985. MR829798 (88h:60099a)
- I. K. Kostov. Boundary ground ring in 2D string theory. Nuclear Physics B, 689(1):3–36, 2004, hep-th/0312301.
- Integrability of Liouville theory: proof of the DOZZ formula. Ann. of Math. (2), 191(1):81–166, 2020, 1707.08785. MR4060417
- J.-F. Le Gall and G. Miermont. Scaling limits of random planar maps with large faces. Ann. Probab., 39(1):1–69, 2011, 0907.3262. MR2778796
- M. Magee and D. Puder. Matrix group integrals, surfaces, and mapping class groups I: 𝒰(n)𝒰𝑛\mathcal{U}(n)caligraphic_U ( italic_n ). Invent. Math., 218(2):341–411, 2019, 1802.04862. MR4011702
- J. Miller and S. Sheffield. CLE(4) and the Gaussian free field. Unpublished.
- J. Miller and S. Sheffield. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Related Fields, 169(3-4):729–869, 2017, 1302.4738. MR3719057
- J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding. Ann. Probab., 49(6):2732–2829, 2021, 1605.03563. MR4348679
- J. Miller and L. Schoug. Existence and uniqueness of the conformally covariant volume measure on conformal loop ensembles. ArXiv e-prints, January 2022, 2201.01748.
- Simple conformal loop ensembles on Liouville quantum gravity. Ann. Probab., 50(3):905–949, 2022, 2002.05698. MR4413208
- J. Pfeffer. Weak Liouville quantum gravity metrics with matter central charge 𝐜∈(−∞,25)𝐜25\mathbf{c}\in(-\infty,25)bold_c ∈ ( - ∞ , 25 ). ArXiv e-prints, April 2021, 2104.04020.
- A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B, 103(3):207–210, 1981. MR623209 (84h:81093a)
- E. Powell. Critical Gaussian multiplicative chaos: a review. Markov Process. Related Fields, 27(4):557–506, 2021, 2006.13767. MR4396197
- W. Qian and W. Werner. Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines. Comm. Math. Phys., 361(1):53–80, 2018, 1703.04350. MR3825935
- S. Ribault. Conformal field theory on the plane. ArXiv e-prints, June 2014, 1406.4290.
- R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat., 15:358–371, 2011, 0807.1036. MR2870520
- R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11:315–392, 2014, 1305.6221. MR3274356
- G. Remy and T. Zhu. Integrability of boundary Liouville conformal field theory. Comm. Math. Phys., 395(1):179–268, 2022, 2002.05625. MR4483018
- N. Seiberg. Notes on quantum Liouville theory and quantum gravity. Number 102, pages 319–349 (1991). 1990. Common trends in mathematics and quantum field theories (Kyoto, 1990). MR1182173
- S. Sheffield. Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139(3-4):521–541, 2007, math/0312099. MR2322706 (2008d:60120)
- S. Sheffield. Exploration trees and conformal loop ensembles. Duke Math. J., 147(1):79–129, 2009, math/0609167. MR2494457 (2010g:60184)
- S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab., 44(5):3474–3545, 2016, 1012.4797. MR3551203
- S. Sheffield. What is a random surface? ArXiv e-prints, March 2022, 2203.02470.
- O. Schramm and S. Sheffield. A contour line of the continuum Gaussian free field. Probab. Theory Related Fields, 157(1-2):47–80, 2013, 1008.2447. MR3101840
- K. Stephenson. Circle packing: a mathematical tale. Notices of the AMS, 50(11):1376–1388, 2003.
- T. Suzuki. A note on quantum Liouville theory via the quantum group. An approach to strong coupling Liouville theory. Nuclear Phys. B, 492(3):717–742, 1997, hep-th/9611181. MR1456122
- S. Sheffield and W. Werner. Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. of Math. (2), 176(3):1827–1917, 2012, 1006.2374. MR2979861
- S. Sheffield and M. Wang. Field-measure correspondence in Liouville quantum gravity almost surely commutes with all conformal maps simultaneously. ArXiv e-prints, May 2016, 1605.06171.
- H. Verlinde. Conformal field theory, two-dimensional quantum gravity and quantization of Teichmüller space. Nuclear Phys. B, 337(3):652–680, 1990. MR1057726
- E. Witten. Ground ring of two-dimensional string theory. Nuclear physics B, 373(1):187–213, 1992, hep-th/9108004.
- W. Werner and E. Powell. Lecture notes on the Gaussian free field, volume 28 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2021, 2004.04720. MR4466634