Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk-Minimizing Two-Player Zero-Sum Stochastic Differential Game via Path Integral Control (2308.11546v1)

Published 22 Aug 2023 in math.OC, cs.SY, and eess.SY

Abstract: This paper addresses a continuous-time risk-minimizing two-player zero-sum stochastic differential game (SDG), in which each player aims to minimize its probability of failure. Failure occurs in the event when the state of the game enters into predefined undesirable domains, and one player's failure is the other's success. We derive a sufficient condition for this game to have a saddle-point equilibrium and show that it can be solved via a Hamilton-Jacobi-Isaacs (HJI) partial differential equation (PDE) with Dirichlet boundary condition. Under certain assumptions on the system dynamics and cost function, we establish the existence and uniqueness of the saddle-point of the game. We provide explicit expressions for the saddle-point policies which can be numerically evaluated using path integral control. This allows us to solve the game online via Monte Carlo sampling of system trajectories. We implement our control synthesis framework on two classes of risk-minimizing zero-sum SDGs: a disturbance attenuation problem and a pursuit-evasion game. Simulation studies are presented to validate the proposed control synthesis framework.

Citations (3)

Summary

We haven't generated a summary for this paper yet.