Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Octopus: A Heterogeneous In-network Computing Accelerator Enabling Deep Learning for network (2308.11312v1)

Published 22 Aug 2023 in cs.AR and cs.NI

Abstract: Deep learning (DL) for network models have achieved excellent performance in the field and are becoming a promising component in future intelligent network system. Programmable in-network computing device has great potential to deploy DL for network models, however, existing device cannot afford to run a DL model. The main challenges of data-plane supporting DL-based network models lie in computing power, task granularity, model generality and feature extracting. To address above problems, we propose Octopus: a heterogeneous in-network computing accelerator enabling DL for network models. A feature extractor is designed for fast and efficient feature extracting. Vector accelerator and systolic array work in a heterogeneous collaborative way, offering low-latency-highthroughput general computing ability for packet-and-flow-based tasks. Octopus also contains on-chip memory fabric for storage and connecting, and Risc-V core for global controlling. The proposed Octopus accelerator design is implemented on FPGA. Functionality and performance of Octopus are validated in several use-cases, achieving performance of 31Mpkt/s feature extracting, 207ns packet-based computing latency, and 90kflow/s flow-based computing throughput.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Dong Wen (11 papers)
  2. Tao Li (441 papers)
  3. Chenglong Li (94 papers)
  4. Pengye Xia (1 paper)
  5. Hui Yang (124 papers)
  6. Zhigang Sun (13 papers)
Citations (1)