Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Neural Bandits (2308.10808v1)

Published 21 Aug 2023 in cs.LG

Abstract: Contextual bandits algorithms aim to choose the optimal arm with the highest reward out of a set of candidates based on the contextual information. Various bandit algorithms have been applied to real-world applications due to their ability of tackling the exploitation-exploration dilemma. Motivated by online recommendation scenarios, in this paper, we propose a framework named Graph Neural Bandits (GNB) to leverage the collaborative nature among users empowered by graph neural networks (GNNs). Instead of estimating rigid user clusters as in existing works, we model the "fine-grained" collaborative effects through estimated user graphs in terms of exploitation and exploration respectively. Then, to refine the recommendation strategy, we utilize separate GNN-based models on estimated user graphs for exploitation and adaptive exploration. Theoretical analysis and experimental results on multiple real data sets in comparison with state-of-the-art baselines are provided to demonstrate the effectiveness of our proposed framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yunzhe Qi (8 papers)
  2. Yikun Ban (26 papers)
  3. Jingrui He (87 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.