Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degenerate crossing number and signed reversal distance (2308.10666v2)

Published 21 Aug 2023 in cs.CG and math.CO

Abstract: The degenerate crossing number of a graph is the minimum number of transverse crossings among all its drawings, where edges are represented as simple arcs and multiple edges passing through the same point are counted as a single crossing. Interpreting each crossing as a cross-cap induces an embedding into a non-orientable surface. In 2007, Mohar showed that the degenerate crossing number of a graph is at most its non-orientable genus and he conjectured that these quantities are equal for every graph. He also made the stronger conjecture that this also holds for any loopless pseudotriangulation with a fixed embedding scheme. In this paper, we prove a structure theorem that almost completely classifies the loopless 2-vertex embedding schemes for which the degenerate crossing number equals the non-orientable genus. In particular, we provide a counterexample to Mohar's stronger conjecture, but show that in the vast majority of the 2-vertex cases, the conjecture does hold. The reversal distance between two signed permutations is the minimum number of reversals that transform one permutation to the other one. If we represent the trajectory of each element of a signed permutation under successive reversals by a simple arc, we obtain a drawing of a 2-vertex embedding scheme with degenerate crossings. Our main result is proved by leveraging this connection and a classical result in genome rearrangement (the Hannenhali-Pevzner algorithm) and can also be understood as an extension of this algorithm when the reversals do not necessarily happen in a monotone order.

Summary

We haven't generated a summary for this paper yet.