Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Doppler-aware Odometry from FMCW Scanning Radar (2308.10597v2)

Published 21 Aug 2023 in cs.RO

Abstract: This work explores Doppler information from a millimetre-Wave (mm-W) Frequency-Modulated Continuous-Wave (FMCW) scanning radar to make odometry estimation more robust and accurate. Firstly, doppler information is added to the scan masking process to enhance correlative scan matching. Secondly, we train a Neural Network (NN) for regressing forward velocity directly from a single radar scan; we fuse this estimate with the correlative scan matching estimate and show improved robustness to bad estimates caused by challenging environment geometries, e.g. narrow tunnels. We test our method with a novel custom dataset which is released with this work at https://ori.ox.ac.uk/publications/datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. K. Burnett, D. J. Yoon, Y. Wu, A. Z. Li, H. Zhang, S. Lu, J. Qian, W.-K. Tseng, A. Lambert, K. Y. Leung, et al., “Boreas: A multi-season autonomous driving dataset,” The International Journal of Robotics Research, 2023.
  2. G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, “Mulran: Multimodal range dataset for urban place recognition,” in IEEE International Conference on Robotics and Automation (ICRA), 2020.
  3. D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The oxford radar robotcar dataset: A radar extension to the oxford robotcar dataset,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2020.
  4. M. Sheeny, E. De Pellegrin, S. Mukherjee, A. Ahrabian, S. Wang, and A. Wallace, “Radiate: A radar dataset for automotive perception in bad weather,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021.
  5. M. Gadd, D. De Martini, and P. Newman, “Contrastive learning for unsupervised radar place recognition,” in International Conference on Advanced Robotics (ICAR), 2021.
  6. D. De Martini, M. Gadd, and P. Newman, “Kradar++: Coarse-to-fine fmcw scanning radar localisation,” Sensors, 2020.
  7. Ş. Săftescu, M. Gadd, D. De Martini, D. Barnes, and P. Newman, “Kidnapped radar: Topological radar localisation using rotationally-invariant metric learning,” in IEEE International Conference on Robotics and Automation (ICRA), 2020.
  8. P. Kaul, D. De Martini, M. Gadd, and P. Newman, “Rss-net: Weakly-supervised multi-class semantic segmentation with fmcw radar,” in IEEE Intelligent Vehicles Symposium (IV), 2020.
  9. R. Aldera, D. D. Martini, M. Gadd, and P. Newman, “Fast radar motion estimation with a learnt focus of attention using weak supervision,” in International Conference on Robotics and Automation (ICRA), 2019.
  10. M. Broome, M. Gadd, D. De Martini, and P. Newman, “On the road: Route proposal from radar self-supervised by fuzzy lidar traversability,” AI, vol. 1, no. 4, pp. 558–585, 2020.
  11. D. Williams, D. De Martini, M. Gadd, L. Marchegiani, and P. Newman, “Keep off the grass: Permissible driving routes from radar with weak audio supervision,” in IEEE International Conference on Intelligent Transportation Systems (ITSC), 2020.
  12. T. Y. Tang, D. De Martini, S. Wu, and P. Newman, “Self-supervised learning for using overhead imagery as maps in outdoor range sensor localization,” The International Journal of Robotics Research, 2021.
  13. T. Y. Tang, D. De Martini, and P. Newman, “Point-based metric and topological localisation between lidar and overhead imagery,” Autonomous Robots (AURO), 2023.
  14. S. H. Cen and P. Newman, “Precise ego-motion estimation with millimeter-wave radar under diverse and challenging conditions,” in IEEE International Conference on Robotics and Automation (ICRA), 2018.
  15. S. H. Cen and P. Newman, “Radar-only ego-motion estimation in difficult settings via graph matching,” in International Conference on Robotics and Automation (ICRA), 2019.
  16. 2012.
  17. A. Alhashimi, D. Adolfsson, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Bfar-bounded false alarm rate detector for improved radar odometry estimation,” arXiv preprint arXiv:2109.09669, 2021.
  18. D. Adolfsson, M. Magnusson, A. W. Alhashimi, A. J. Lilienthal, and H. Andreasson, “CFEAR radarodometry - conservative filtering for efficient and accurate radar odometry,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021.
  19. D. Barnes and I. Posner, “Under the radar: Learning to predict robust keypoints for odometry estimation and metric localisation in radar,” in IEEE international conference on robotics and automation (ICRA), 2020.
  20. K. Burnett, D. J. Yoon, A. P. Schoellig, and T. D. Barfoot, “Radar odometry combining probabilistic estimation and unsupervised feature learning,” in Robotics: Science and Systems (RSS), 2021.
  21. D. Barnes, R. Weston, and I. Posner, “Masking by moving: Learning distraction-free radar odometry from pose information,” in Conference on Robot Learning (CoRL), 2019.
  22. R. Weston, M. Gadd, D. D. Martini, P. Newman, and I. Posner, “Fast-mbym: Leveraging translational invariance of the fourier transform for efficient and accurate radar odometry,” in IEEE International Conference on Robotics and Automation (ICRA), 2022.
  23. K. Burnett, A. P. Schoellig, and T. D. Barfoot, “Do we need to compensate for motion distortion and doppler effects in spinning radar navigation?,” IEEE Robotics and Automation Letters, 2021.
  24. Y. Zhuang, B. Wang, J. Huai, and M. Li, “4d iriom: 4d imaging radar inertial odometry and mapping,” IEEE Robotics and Automation Letters, 2023.
  25. Y. Wu, D. J. Yoon, K. Burnett, S. Kammel, Y. Chen, H. Vhavle, and T. D. Barfoot, “Picking up speed: Continuous-time lidar-only odometry using doppler velocity measurements,” IEEE Robotics and Automation Letters, 2022.
  26. N. Ruiz, E. Chong, and J. M. Rehg, “Fine-grained head pose estimation without keypoints,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2018.
  27. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International conference on machine learning, 2019.
  28. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.
  29. T. Y. Tang, D. De Martini, D. Barnes, and P. Newman, “Rsl-net: Localising in satellite images from a radar on the ground,” IEEE Robotics and Automation Letters, 2020.
  30. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in IEEE conference on computer vision and pattern recognition, 2012.
Citations (4)

Summary

We haven't generated a summary for this paper yet.