Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Approximation of Singular Functions by Series of Non-integer Powers (2308.10439v3)

Published 21 Aug 2023 in math.NA and cs.NA

Abstract: In this paper, we describe an algorithm for approximating functions of the form $f(x)=\int_{a}{b} x{\mu} \sigma(\mu) \, d \mu$ over $[0,1]$, where $\sigma(\mu)$ is some signed Radon measure, or, more generally, of the form $f(x) = <\sigma(\mu),\, x\mu>$, where $\sigma(\mu)$ is some distribution supported on $[a,b]$, with $0 <a < b < \infty$. One example from this class of functions is $x^c (\log{x})^m=(-1)^m <\delta^{(m)}(\mu-c), \, x^\mu>$, where $a\leq c \leq b$ and $m \geq 0$ is an integer. Given the desired accuracy $\epsilon$ and the values of $a$ and $b$, our method determines a priori a collection of non-integer powers $t_1$, $t_2$, $\ldots$, $t_N$, so that the functions are approximated by series of the form $f(x)\approx \sum_{j=1}N c_j x{t_j}$, and a set of collocation points $x_1$, $x_2$, $\ldots$, $x_N$, such that the expansion coefficients can be found by collocating the function at these points. We prove that our method has a small uniform approximation error which is proportional to $\epsilon$ multiplied by some small constants, and that the number of singular powers and collocation points grows as $N=O(\log{\frac{1}{\epsilon}})$. We demonstrate the performance of our algorithm with several numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Babuška, I., B. Andersson, B. Guo, J. M. Melenk, and H. S. Oh. “Finite element method for solving problems with singular solutions.” J. Comput. Appl. Math. 74 (1996): 51–70.
  2. Bauer, F.L., and C.T. Fike. “Norms and exclusion theorems.” Numer. Math. 2.1 (1960): 137–141.
  3. Bertero, M., P. Boccacci, and E.R. Pike. “On the recovery and resolution of exponential relaxation rates from experimental data: a singular-value analysis of the Laplace transform inversion in the presence of noise.” P. Roy. Soc. A-Math. Phy. 383 (1982): 15–29.
  4. Beylkin, G., and L. Monzón. “On approximation of functions by exponential sums.” Appl. Comput. Harmon. A. 19.1 (2005): 1063–5203.
  5. Chen, S., and J. Shen. “Enriched spectral methods and applications to problems with weakly singular solutions.” J. Sci. Comput. 77 (2018): 1468–1489.
  6. Coppé, V., D. Huybrechs, R. Matthysen, and M. Webb. “The AZ algorithm for least squares systems with a known incomplete generalized inverse.” SIAM J. Matrix Anal. A. 41.3 (2020): 1237–1259.
  7. Filip, S., Y. Nakatsukasa, L. N. Trefethen, and B. Beckermann. “Rational minimax approximation via adaptive barycentric representations.” SIAM J. Sci. Comput. 40.4 (2018): A2427–A2455.
  8. Fix, G. J., S. Gulati, and G. I. Wakoff. “On the use of singular functions with finite element approximations.” J. Comput. Phys. 13.2 (1973): 209–228.
  9. Fries, T.-P., and T. Belytschko. “The extended/generalized finite element method: an overview of the method and its applications.” Int. J. Numer. Methods Eng. 84.3 (2010): 253–304.
  10. Gončar, A. A. “On the rapidity of rational approximation of continuous functions with characteristic singularities.” Math. USSR-Sb. 2.4 (1967): 561–568.
  11. Gopal, A., and L. N. Trefethen. “New Laplace and Helmholtz solvers.” Proc. Natl. Acad. Sci. 116.21 (2019): 10223–10225.
  12. Gopal, A., and L. N. Trefethen. “Solving Laplace Problems with corner singularities via rational functions.” SIAM J. Numer. Anal. 57.5 (2019): 2074–2094.
  13. Gutknecht, M. H., and L. N. Trefethen. “Nonuniqueness of best rational Chebyshev approximations on the unit disk.” J. Approx. Theory 39.3 (1983): 275–288.
  14. Hansen, P.C. “The truncated SVD as a method for regularization.” BIT. 27.4 (1987): 534–553.
  15. Herremans, A., and D. Huybrechs. “Efficient function approximation in enriched approximation spaces.” ArXiv 2023.
  16. Lederman, R.R., and V. Rokhlin. “On the analytical and numerical properties of the truncated Laplace transform I.” SIAM J. Numer. Anal. 53.3 (2015): 1214–1235.
  17. Lederman, R.R., and V. Rokhlin. “On the analytical and numerical properties of the truncated Laplace transform. Part II.” SIAM J. Numer. Anal. 54.2 (2016): 665–687.
  18. Lehman, R. S. “Developments at an Analytic Corner of Solutions of Elliptic Partial Differential Equations.” J. Math. Mech. 8.5 (1959): 727–760.
  19. Lucas, T. R., and H. S. Oh. “The method of auxiliary mapping for the finite element solutions of elliptic problems containing singularities.” J. Comput. Phys. 108.2 (1993): 327–342.
  20. Mori, M. “ Discovery of the Double Exponential Transformation and Its Developments.” Publ. Res. Inst. Math. Sci. 41 (2005): 897–935.
  21. Nakatsukasa, Y., and L. N. Trefethen. “An algorithm for real and complex rational minimax approximation.” SIAM J. Sci. Comput. 42.5 (2020): A3157–A3179.
  22. Nakatsukasa, Y., and L. N. Trefethen. “Reciprocal-log approximation and planar PDE solvers.” SIAM J. Numer. Anal. 59.6 (2021): 2801–2822.
  23. Nakatsukasa, Y., O. Sète, and L. N. Trefethen. “The AAA algorithm for rational approximation.” SIAM J. Sci. Comput. 40.3 (2018): A1494–A1522.
  24. Newman, D. J. “Rational approximation to |x|𝑥|x|| italic_x |.” Mich. Math. J. 11.1 (1964): 11–14.
  25. Okayama, T., T. Matsuo, and M. Sugihara. “Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind.” J. Comput. Appl. Math. 234.4 (2010): 1211–1227.
  26. Olson, L. G., G. C. Georgiou, and W. W. Schultz. “An efficient finite element method for treating singularities in Laplace’s Equation.” J. Comput. Phys. 96.2 (1991): 391–410.
  27. Roache, P. J. “A pseudo-spectral FFT technique for non-periodic problems.” J. Comput. Phys. 27.2 (1978): 204–220.
  28. Serkh, K. “On the Solution of Elliptic Partial Differential Equations on Regions with Corners.” J. Comput. Phys. 305 (2016): 150–171.
  29. Serkh, K., and V. Rokhlin. “On the solution of the Helmholtz equation on regions with corners.” Proc. Natl. Acad. Sci. 113.33 (2016): 9171–9176.
  30. Stahl, H. “Best uniform rational approximation of xαsuperscript𝑥𝛼x^{\alpha}italic_x start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT on [0,1]01[0,1][ 0 , 1 ].” Acta. Math. 190 (2003): 241–306.
  31. Stenger, F. “Explicit nearly optimal linear rational approximation with preassigned poles.” Math. Comput. 47.175 (1986): 225–252.
  32. Stenger, F. “Numerical Methods Based on Sinc and Analytic Functions in numerical Analysis.” SSCM Springer-Verlag, 1993.
  33. Tong, P., and T. H. H. Pian. “On the convergence of the finite element method for problems with singularity.” Int. J. Solids Struct. 9.3 (1973): 313–321.
  34. Trefethen, L. N., Y. Nakatsukasa, and J. A. C. Weideman. “Exponential node clustering at singularities for rational approximation, quadrature, and PDEs.” Numer. Math. 147.1 (2021): 227–254.
  35. Wasow, W. “Asymptotic development of the solution of Dirichlet’s problem at analytic corners.” Duke Math. J. 24.1 (1957): 47–56.

Summary

We haven't generated a summary for this paper yet.