Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic Attention-model Explainability by Weighted Relevance Accumulation (2308.10240v1)

Published 20 Aug 2023 in cs.CV

Abstract: Attention-based transformer models have achieved remarkable progress in multi-modal tasks, such as visual question answering. The explainability of attention-based methods has recently attracted wide interest as it can explain the inner changes of attention tokens by accumulating relevancy across attention layers. Current methods simply update relevancy by equally accumulating the token relevancy before and after the attention processes. However, the importance of token values is usually different during relevance accumulation. In this paper, we propose a weighted relevancy strategy, which takes the importance of token values into consideration, to reduce distortion when equally accumulating relevance. To evaluate our method, we propose a unified CLIP-based two-stage model, named CLIPmapper, to process Vision-and-Language tasks through CLIP encoder and a following mapper. CLIPmapper consists of self-attention, cross-attention, single-modality, and cross-modality attention, thus it is more suitable for evaluating our generic explainability method. Extensive perturbation tests on visual question answering and image captioning validate that our explainability method outperforms existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yiming Huang (55 papers)
  2. Aozhe Jia (1 paper)
  3. Xiaodan Zhang (26 papers)
  4. Jiawei Zhang (529 papers)
Citations (1)