Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Artificial Upwelling Energy Management (2308.10199v2)

Published 20 Aug 2023 in cs.LG and cs.AI

Abstract: The potential of artificial upwelling (AU) as a means of lifting nutrient-rich bottom water to the surface, stimulating seaweed growth, and consequently enhancing ocean carbon sequestration, has been gaining increasing attention in recent years. This has led to the development of the first solar-powered and air-lifted AU system (AUS) in China. However, efficient scheduling of air injection systems in complex marine environments remains a crucial challenge in operating AUS, as it holds the potential to significantly improve energy efficiency. To tackle this challenge, we propose a novel energy management approach that utilizes deep reinforcement learning (DRL) algorithm to develop efficient strategies for operating AUS. Specifically, we formulate the problem of maximizing the energy efficiency of AUS as a Markov decision process and integrate the quantile network in distributional reinforcement learning (QR-DQN) with the deep dueling network to solve it. Through extensive simulations, we evaluate the performance of our algorithm and demonstrate its superior effectiveness over traditional rule-based approaches and other DRL algorithms in reducing energy wastage while ensuring the stable and efficient operation of AUS. Our findings suggest that a DRL-based approach offers a promising way to improve the energy efficiency of AUS and enhance the sustainability of seaweed cultivation and carbon sequestration in the ocean.

Citations (2)

Summary

We haven't generated a summary for this paper yet.