Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Implicit Variational Inference via Score Matching (2308.10014v1)

Published 19 Aug 2023 in stat.ML, cs.LG, and stat.ME

Abstract: Semi-implicit variational inference (SIVI) greatly enriches the expressiveness of variational families by considering implicit variational distributions defined in a hierarchical manner. However, due to the intractable densities of variational distributions, current SIVI approaches often use surrogate evidence lower bounds (ELBOs) or employ expensive inner-loop MCMC runs for unbiased ELBOs for training. In this paper, we propose SIVI-SM, a new method for SIVI based on an alternative training objective via score matching. Leveraging the hierarchical structure of semi-implicit variational families, the score matching objective allows a minimax formulation where the intractable variational densities can be naturally handled with denoising score matching. We show that SIVI-SM closely matches the accuracy of MCMC and outperforms ELBO-based SIVI methods in a variety of Bayesian inference tasks.

Citations (9)

Summary

We haven't generated a summary for this paper yet.