Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overlap Bias Matching is Necessary for Point Cloud Registration (2308.09364v1)

Published 18 Aug 2023 in cs.CV

Abstract: Point cloud registration is a fundamental problem in many domains. Practically, the overlap between point clouds to be registered may be relatively small. Most unsupervised methods lack effective initial evaluation of overlap, leading to suboptimal registration accuracy. To address this issue, we propose an unsupervised network Overlap Bias Matching Network (OBMNet) for partial point cloud registration. Specifically, we propose a plug-and-play Overlap Bias Matching Module (OBMM) comprising two integral components, overlap sampling module and bias prediction module. These two components are utilized to capture the distribution of overlapping regions and predict bias coefficients of point cloud common structures, respectively. Then, we integrate OBMM with the neighbor map matching module to robustly identify correspondences by precisely merging matching scores of points within the neighborhood, which addresses the ambiguities in single-point features. OBMNet can maintain efficacy even in pair-wise registration scenarios with low overlap ratios. Experimental results on extensive datasets demonstrate that our approach's performance achieves a significant improvement compared to the state-of-the-art registration approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.