Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Resource Allocation for U-Shaped Parallel Split Learning (2308.08896v3)

Published 17 Aug 2023 in cs.LG

Abstract: Split learning (SL) has emerged as a promising approach for model training without revealing the raw data samples from the data owners. However, traditional SL inevitably leaks label privacy as the tail model (with the last layers) should be placed on the server. To overcome this limitation, one promising solution is to utilize U-shaped architecture to leave both early layers and last layers on the user side. In this paper, we develop a novel parallel U-shaped split learning and devise the optimal resource optimization scheme to improve the performance of edge networks. In the proposed framework, multiple users communicate with an edge server for SL. We analyze the end-to-end delay of each client during the training process and design an efficient resource allocation algorithm, called LSCRA, which finds the optimal computing resource allocation and split layers. Our experimental results show the effectiveness of LSCRA and that U-shaped parallel split learning can achieve a similar performance with other SL baselines while preserving label privacy. Index Terms: U-shaped network, split learning, label privacy, resource allocation, 5G/6G edge networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. X. Hou, J. Wang, Z. Fang, Y. Ren, K.-C. Chen, and L. Hanzo, “Edge intelligence for mission-critical 6G services in space-air-ground integrated networks,” IEEE Netw., vol. 36, no. 2, pp. 181–189, 2022.
  2. H. Peng and L.-C. Wang, “Energy Harvesting Reconfigurable Intelligent Surface for UAV Based on Robust Deep Reinforcement Learning,” IEEE Trans. Wireless Commun., 2023.
  3. X. Hou, J. Wang, Z. Fang, X. Zhang, S. Song, X. Zhang, and Y. Ren, “Machine-learning-aided Mission-critical Internet of Underwater Things,” IEEE Netw., vol. 35, no. 4, pp. 160–166, 2021.
  4. H. Peng, A.-H. Tsai, L.-C. Wang, and Z. Han, “LEOPARD: Parallel Optimal Deep Echo State Network Prediction Improves Service Coverage for UAV-Assisted Outdoor Hotspots,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 1, pp. 282–295, 2021.
  5. J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated Learning: Strategies For Improving Communication Efficiency,” arXiv preprint arXiv:1610.05492, 2016.
  6. X. Chen, G. Zhu, Y. Deng, and Y. Fang, “Federated Learning over Multihop Wireless Networks with In-Network Aggregation,” IEEE Trans. Wirel. Commun., vol. 21, no. 6, pp. 4622–4634, 2022.
  7. A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A Survey on Federated Learning for Resource-constrained IoT Devices,” IEEE Internet Things J., vol. 9, no. 1, pp. 1–24, 2021.
  8. P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split Learning For Health: Distributed Deep Learning Without Sharing Raw Patient Data,” arXiv preprint arXiv:1812.00564, 2018.
  9. O. Gupta and R. Raskar, “Distributed Learning of Deep Neural Network over Multiple Agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8, 2018.
  10. Z. Lin, G. Qu, X. Chen, and K. Huang, “Split Learning in 6G Edge Networks,” arXiv preprint arXiv:2306.12194, 2023.
  11. Z. Lin, G. Zhu, Y. Deng, X. Chen, Y. Gao, K. Huang, and Y. Fang, “Efficient Parallel Split Learning over Resource-constrained Wireless Edge Networks,” arXiv preprint arXiv:2303.15991, 2023.
  12. Z. Lin, G. Qu, Q. Chen, X. Chen, Z. Chen, and K. Huang, “Pushing Large Language Models to the 6G Edge: Vision, Challenges, and Opportunities,” arXiv preprint arXiv:2309.16739, 2023.
  13. J. Jeon and J. Kim, “Privacy-sensitive Parallel Split Learning,” in Proc. ICOIN, 2020.
  14. C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When Federated Learning Meets Split Learning,” in Proc. AAAI, 2022.
  15. B. Yin, Z. Chen, and M. Tao, “Predictive gan-powered multi-objective optimization for hybrid federated split learning,” IEEE Trans. Commun., 2023.
  16. Z. Yang, Y. Chen, H. Huangfu, M. Ran, H. Wang, X. Li, and Y. Zhang, “Robust Split Federated Learning for U-shaped Medical Image Networks,” arXiv preprint arXiv:2212.06378, 2022.
  17. X. Chen, Y. Deng, H. Ding, G. Qu, H. Zhang, P. Li, and Y. Fang, “Vehicle as a service (VaaS): Leverage vehicles to build service networks and capabilities for smart cities,” arXiv preprint arXiv:2304.11397, 2023.
  18. H. Ding and K. G. Shin, “Context-aware beam tracking for 5G mmwave V2I communications,” IEEE Trans. Mobile Comput., vol. 22, no. 6, pp. 3257 – 3269, June 2023.
  19. Z. Lin, L. Wang, J. Ding, B. Tan, and S. Jin, “Channel Power Gain Estimation for Terahertz Vehicle-to-infrastructure Networks,” IEEE Commun. Lett., vol. 27, no. 1, pp. 155–159, 2022.
  20. Z. Lin, L. Wang, J. Ding, Y. Xu, and B. Tan, “Tracking and Transmission Design in Terahertz V2I Networks,” IEEE Trans. Wireless Commun., 2022.
  21. P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 Dataset, A Large Collection of Multi-source Dermatoscopic Images of Common Pigmented Skin Lesions,” Sci. Data, vol. 5, no. 1, pp. 1–9, 2018.
  22. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied to Document Recognition,” Proc IEEE Inst Electr Electron Eng, vol. 86, no. 11, pp. 2278–2324, 1998.
Citations (21)

Summary

We haven't generated a summary for this paper yet.