Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of Fair Division of Indivisible Items with Externalities (2308.08869v2)

Published 17 Aug 2023 in cs.GT

Abstract: We study the computational complexity of fairly allocating a set of indivisible items under externalities. In this recently-proposed setting, in addition to the utility the agent gets from their bundle, they also receive utility from items allocated to other agents. We focus on the extended definitions of envy-freeness up to one item (EF1) and of envy-freeness up to any item (EFX), and we provide the landscape of their complexity for several different scenarios. We prove that it is NP-complete to decide whether there exists an EFX allocation, even when there are only three agents, or even when there are only six different values for the items. We complement these negative results by showing that when both the number of agents and the number of different values for items are bounded by a parameter the problem becomes fixed-parameter tractable. Furthermore, we prove that two-valued and binary-valued instances are equivalent and that EFX and EF1 allocations coincide for this class of instances. Finally, motivated from real-life scenarios, we focus on a class of structured valuation functions, which we term agent/item-correlated. We prove their equivalence to the ``standard'' setting without externalities. Therefore, all previous results for EF1 and EFX apply immediately for these valuations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Maximum Nash welfare and other stories about EFX. Theoretical Computer Science, 863:69–85, 2021. ISSN 0304-3975. doi:10.1016/j.tcs.2021.02.020.
  2. Fair division of indivisible goods: Recent progress and open questions. Artificial Intelligence, 322:103965, 2023. doi:10.1016/j.artint.2023.103965.
  3. Fair allocation of indivisible goods and chores. Autonomous Agents and Multi-Agent Systems, 36(1):3, Nov 2021. ISSN 1573-7454. doi:10.1007/s10458-021-09532-8.
  4. Fair allocation of two types of chores. In Noa Agmon, Bo An, Alessandro Ricci, and William Yeoh, editors, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’23, pages 143–151, Richland, SC, 2023a. IFAAMAS.
  5. Fairness concepts for indivisible items with externalities. In Brian Williams, Yiling Chen, and Jennifer Neville, editors, Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI ’23, volume 37, part 5, pages 5472–5480. AAAI Press, 2023b. doi:10.1609/aaai.v37i5.25680.
  6. Fair and truthful mechanisms for dichotomous valuations. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI ’21, volume 35, part 6, pages 5119–5126. AAAI Press, 2021. doi:10.1609/aaai.v35i6.16647.
  7. Greedy algorithms for maximizing Nash social welfare. In Elisabeth André, Sven Koenig, Mehdi Dastani, and Gita Sukthankar, editors, Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’18, pages 7–13, Richland, SC, 2018. IFAAMAS. URL http://dl.acm.org/citation.cfm?id=3237392.
  8. Almost full EFX exists for four agents. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI ’22, volume 36, part 5, pages 4826–4833. AAAI Press, 2022. doi:10.1609/aaai.v36i5.20410.
  9. The parameterized complexity of network microaggregation. In Brian Williams, Yiling Chen, and Jennifer Neville, editors, Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI ’23, volume 37, part 5, pages 6262–6270. AAAI Press, 2023. doi:10.1609/aaai.v37i5.25771.
  10. Efficiency and envy-freeness in fair division of indivisible goods: Logical representation and complexity. Journal of Artificial Intelligence Research, 32:525–564, 2008. doi:10.1613/jair.2467.
  11. Externalities in cake cutting. In Francesca Rossi, editor, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI ’13, pages 55–61. IJCAI/AAAI, 2013. URL https://www.ijcai.org/Abstract/13/019.
  12. High-multiplicity fair allocation: Lenstra empowered by N-fold integer programming. In Anna Karlin, Nicole Immorlica, and Ramesh Johari, editors, Proceedings of the 20th ACM Conference on Economics and Computation, EC ’19, page 505–523, New York, NY, USA, 2019. ACM. doi:10.1145/3328526.3329649.
  13. Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.
  14. Graph bisection algorithms with good average case behavior. Combinatorica, 7(2):171–191, 1987.
  15. The unreasonable fairness of maximum Nash welfare. ACM Transactions on Economics and Computation, 7(3):1–32, 2019.
  16. EFX exists for three agents. In Péter Biró, Jason D. Hartline, Michael Ostrovsky, and Ariel D. Procaccia, editors, Proceedings of the 21st ACM Conference on Economics and Computation, EC ’20, pages 1–19, New York, NY, USA, 2020. ACM. doi:10.1145/3391403.3399511.
  17. Tight lower bounds for certain parameterized NP-hard problems. Information and Computation, 201(2):216–231, 2005. doi:10.1016/J.IC.2005.05.001.
  18. Parameterized Algorithms. Springer, Cham, 2015. ISBN 978-3-319-21274-6. doi:10.1007/978-3-319-21275-3.
  19. The parameterized complexity of connected fair division. In Zhi-Hua Zhou, editor, Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI ’21, pages 139–145. ijcai.org, 2021. doi:10.24963/ijcai.2021/20.
  20. The complexity of fair division of indivisible items with externalities. In Michael Wooldridge, Jennifer Dy, and Sriraam Natarajan, editors, Proceedings of the 38th AAAI Conference on Artificial Intelligence, AAAI ’24, volume 38, part 9, pages 9653–9661. AAAI Press, March 2024. doi:10.1609/aaai.v38i9.28822.
  21. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London, 2013. ISBN 978-1-4471-5558-4. doi:10.1007/978-1-4471-5559-1.
  22. How to fairly allocate easy and difficult chores. In Piotr Faliszewski, Viviana Mascardi, Catherine Pelachaud, and Matthew E. Taylor, editors, Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’22, page 372–380, Richland, SC, 2022. IFAAMAS.
  23. On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1):53–61, January 2009. doi:10.1016/j.tcs.2008.09.065.
  24. An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica, 7(1):49–65, 1987. doi:10.1007/BF02579200.
  25. Equitable allocations of indivisible goods. In Sarit Kraus, editor, Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI ’19, pages 280–286. ijcai.org, 2019. doi:10.24963/ijcai.2019/40.
  26. The complexity of bayesian network learning: Revisiting the superstructure. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Proceedings of the 35th Conference on Neural Information Processing Systems, NeurIPS ’21, pages 430–442, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html.
  27. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979. ISBN 0-7167-1044-7.
  28. Computing fair and efficient allocations with few utility values. Theoretical Computer Science, 962:113932, 2023. ISSN 0304-3975. doi:10.1016/j.tcs.2023.113932.
  29. Fair and efficient allocations of chores under bivalued preferences. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI ’22, volume 36, part 5, pages 5043–5050. AAAI Press, 2022. doi:10.1609/aaai.v36i5.20436.
  30. EFX exists for four agents with three types of valuations. CoRR, abs/2301.10632, 2023. doi:10.48550/arXiv.2301.10632.
  31. The frontier of intractability for EFX with two agents. In Argyrios Deligkas and Aris Filos-Ratsikas, editors, Proceedings of the 16th International Symposium on Algorithmic Game Theory, SAGT ’23, volume 14238 of Lecture Notes in Computer Science, pages 290–307. Springer, 2023. doi:10.1007/978-3-031-43254-5_17.
  32. Fair allocation of a multiset of indivisible items. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 34th ACM-SIAM Symposium on Discrete Algorithms, SODA ’23, pages 304–331. SIAM, 2023. doi:10.1137/1.9781611977554.ch13.
  33. Fair division with binary valuations: One rule to rule them all. In Xujin Chen, Nikolai Gravin, Martin Hoefer, and Ruta Mehta, editors, Proceedings of the 16th International Conference on Web and Internet Economics, WINE ’20, volume 12495 of Lecture Notes in Computer Science, pages 370–383. Springer, 2020. doi:10.1007/978-3-030-64946-3_26.
  34. Fairly allocating goods and (terrible) chores. In Edith Elkind, editor, Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI ’23, pages 2738–2746. ijcai.org, 2023a. doi:10.24963/ijcai.2023/305.
  35. Fairly dividing mixtures of goods and chores under lexicographic preferences. In Noa Agmon, Bo An, Alessandro Ricci, and William Yeoh, editors, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’23, pages 152–160, Richland, SC, 2023b. IFAAMAS.
  36. On parameterized complexity of group activity selection problems on social networks. In Kate Larson, Michael Winikoff, Sanmay Das, and Edmund H. Durfee, editors, Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems, AAMAS ’17, pages 1575–1577. ACM, 2017. URL http://dl.acm.org/citation.cfm?id=3091367.
  37. Fair division with two-sided preferences. In Edith Elkind, editor, Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI ’23, pages 2756–2764. ijcai.org, 8 2023. doi:10.24963/ijcai.2023/307.
  38. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research, 12(3):415–440, 1987. doi:10.1287/moor.12.3.415.
  39. A parameterized complexity analysis of generalized CP-nets. In Carla E. Brodley and Peter Stone, editors, Proceedings of the 28th AAAI Conference on Artificial Intelligence, AAAI ’14, pages 1091–1097. AAAI Press, 2014. doi:10.1609/aaai.v28i1.8859.
  40. Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.
  41. Truthful cake cutting mechanisms with externalities: Do not make them care for others too much! In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI ’15, pages 589–595. AAAI Press, 2015. URL http://ijcai.org/Abstract/15/089.
  42. On approximately fair allocations of indivisible goods. In Jack S. Breese, Joan Feigenbaum, and Margo I. Seltzer, editors, Proceedings of the 5th ACM Conference on Electronic Commerce, EC ’04, pages 125–131. ACM, 2004. doi:10.1145/988772.988792.
  43. Complexity results and exact algorithms for fair division of indivisible items: A survey. In Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI ’23, pages 6732–6740. ijcai.org, 2023. doi:10.24963/ijcai.2023/754.
  44. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, 2006. ISBN 978-0-1985-6607-6. doi:10.1093/acprof:oso/9780198566076.001.0001.
  45. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Journal of Computer and System Sciences, 67(4):757–771, December 2003. doi:10.1016/S0022-0000(03)00078-3.
  46. Almost envy-freeness with general valuations. SIAM Journal on Discrete Mathematics, 34(2):1039–1068, 2020. doi:10.1137/19M124397X.
  47. On maximum weighted Nash welfare for binary valuations. Mathematical Social Sciences, 117:101–108, 2022. ISSN 0165-4896. doi:10.1016/j.mathsocsci.2022.03.004.
  48. Rodrigo A. Velez. Fairness and externalities. Theoretical Economics, 11(1):381–410, 2016. ISSN 1555-7561. doi:10.3982/TE1651.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com