Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A topological counterpart of well-founded trees in dependent type theory (2308.08404v2)

Published 16 Aug 2023 in cs.LO

Abstract: Within dependent type theory, we provide a topological counterpart of well-founded trees (for short, W-types) by using a proof-relevant version of the notion of inductively generated suplattices introduced in the context of formal topology under the name of inductively generated basic covers. In more detail, we show, firstly, that in Homotopy Type Theory, W-types and proof relevant inductively generated basic covers are propositionally mutually encodable. Secondly, we prove they are definitionally mutually encodable in the Agda implementation of intensional Martin-Loef's type theory. Finally, we reframe the equivalence in the Minimalist Foundation framework by introducing well-founded predicates as the logical counterpart for predicates of dependent W-types. All the results have been checked in the Agda proof-assistant.

Citations (5)

Summary

We haven't generated a summary for this paper yet.