Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hydrodynamics of bubble flow through a porous medium with applications to packed bed reactors (2308.08075v2)

Published 16 Aug 2023 in physics.flu-dyn and cs.CE

Abstract: Gas-liquid flows through packed bed reactors (PBRs) are challenging to predict due to the tortuous flow paths that fluid interfaces must traverse. Experiments at the International Space Station showed that bubble and pulse flows are predominately observed under microgravity conditions, while the trickle and spray flows observed under terrestrial conditions are not present in microgravity. To understand the physics behind the former experiments, we simulate bubble flow through a PBR for different packing-particle-diameter-based Weber numbers and under different gravity conditions. We demonstrate different pore-scale mechanisms, such as capillary entrapment, buoyancy entrapment, and inertia-induced bubble displacement. Then, we perform a quantitative analysis by introducing new dynamic scales, dependent upon the evolving gas-liquid interfacial area, to understand the dynamic trade-offs between the inertia, capillary, and buoyancy forces on a bubble passing through a PBR. This analysis leads us to define new dimensionless Weber-like numbers that delineate bubble entrapment from bubble displacement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Adler, P. M. and Brenner, H., “Multiphase Flow in Porous Media,” Annual Review of Fluid Mechanics 20, 35–59 (1988).
  2. Ambekar, A. S., Mondal, S.,  and Buwa, V. V., “Pore-resolved volume-of-fluid simulations of two-phase flow in porous media: Pore-scale flow mechanisms and regime map,” Physics of Fluids 33, 102119 (2021).
  3. Ambekar, A. S., Rüde, U.,  and Buwa, V. V., “Forces governing the dynamics of liquid spreading in packed beds,” Journal of Fluid Mechanics 948, A13 (2022a).
  4. Ambekar, A. S., Rüde, U.,  and Buwa, V. V., “Particle-resolved simulations of local liquid spreading in packed beds: Effect of wettability at varying particle size,” Physics of Fluids 34, 062111 (2022b).
  5. ANSYS Inc.,, “ANSYS® Academic Research Fluent, Release 2022 R1, Fluent Theory Guide,” Tech. Rep. (ANSYS Inc., Canonsburg, PA, 2022).
  6. ANSYS Inc.,, “ANSYS® Academic Research Fluent, Release 2022 R1, Fluent User’s Guide,” Tech. Rep. (ANSYS Inc., Canonsburg, PA, 2022).
  7. ANSYS Inc.,, “ANSYS® Academic Research SpaceClaim, Release 2022 R1, Discovery SpaceClaim,” Tech. Rep. (ANSYS Inc., Canonsburg, PA, 2022).
  8. Azarpour, A., Rezaei, N.,  and Zendehboudi, S., “Performance analysis and modeling of catalytic trickle-bed reactors: a comprehensive review,” Journal of Industrial and Engineering Chemistry 103, 1–41 (2021).
  9. Blender Online Community,, “Blender - a 3D modelling and rendering package,” Tech. Rep. (Blender Foundation, Amsterdam, 2018).
  10. Boccardo, G., Augier, F., Haroun, Y., Ferré, D.,  and Marchisio, D. L., “Validation of a novel open-source work-flow for the simulation of packed-bed reactors,” Chemical Engineering Journal 279, 809–820 (2015).
  11. Boccardo, G., Del Plato, L., Marchisio, D. L., Augier, F., Haroun, Y., Ferre, D.,  and Icardi, M., “Pore-scale simulation of fluid flow in packed-bed reactors via rigid-body simulations and CFD,” in 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries (SINTEF, Trondheim, Norway, 2014) pp. 1–7.
  12. Brackbill, J., Kothe, D.,  and Zemach, C., “A continuum method for modeling surface tension,” Journal of Computational Physics 100, 335–354 (1992).
  13. Brenner, H., “Rheology of Two-Phase Systems,” Annual Review of Fluid Mechanics 2, 137–176 (1970).
  14. Deshpande, S. S., Walker, J., Pressler, J.,  and Hickman, D., “Effect of packing size on packed bubble column hydrodynamics,” Chemical Engineering Science 186, 199–208 (2018).
  15. Dias, M. M. and Payatakes, A. C., “Network models for two-phase flow in porous media Part 1. Immiscible microdisplacement of non-wetting fluids,” Journal of Fluid Mechanics 164, 305–336 (1986).
  16. Drew, D. A., “Mathematical Modeling of Two-Phase Flow,” Annual Review of Fluid Mechanics 15, 261–291 (1983).
  17. Hernandez-Aguirre, A., Hernandez-Martinez, E., López-Isunza, F.,  and Castillo, C. O., “Framing a novel approach for pseudo continuous modeling using Direct Numerical Simulations (DNS): Fluid dynamics in a packed bed reactor,” Chemical Engineering Journal 429, 132061 (2022).
  18. Hirt, C. W. and Nichols, B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries,” Journal of Computational Physics 39, 201–225 (1981).
  19. de Klerk, A., “Voidage variation in packed beds at small column to particle diameter ratio,” AIChE Journal 49, 2022–2029 (2003).
  20. Koch, D. L. and Hill, R. J., “Inertial effects in suspension and porous-media flows,” Annual Review of Fluid Mechanics 33, 619–647 (2001).
  21. Motil, B. J., Balakotaiah, V.,  and Kamotani, Y., “Gas–liquid two-phase flow through packed beds in microgravity,” AIChE Journal 49, 557–565 (2003).
  22. O’Brien, A., Afkhami, S.,  and Bussmann, M., “Pore-scale direct numerical simulation of Haines jumps in a porous media model,” The European Physical Journal Special Topics 229, 1785–1798 (2020).
  23. Partopour, B. and Dixon, A. G., “An integrated workflow for resolved-particle packed bed models with complex particle shapes,” Powder Technology 322, 258–272 (2017).
  24. Popinet, S., “Numerical Models of Surface Tension,” Annual Review of Fluid Mechanics 50, 49–75 (2018).
  25. Salgi, P. and Balakotaiah, V., “Impact of gravity on the bubble-to-pulse transition in packed beds,” AIChE Journal 60, 778–793 (2014).
  26. Salgi, P. and Balakotaiah, V., “Experimentally-based constitutive relations for co-current gas-liquid flow in randomly packed beds,” AIChE Journal 63, 812–822 (2017).
  27. Sun, Y., Béguin, C., Causse, P., Benmokrane, B.,  and Trochu, F., “Convective Heat Transfer Between a Bead Packing and Its Bounding Wall: Part II—Numerical Analysis and Experimental Validation,” Transport in Porous Media 143, 1–22 (2022a).
  28. Sun, Y., Béguin, C., Causse, P., Benmokrane, B.,  and Trochu, F., “Convective Heat Transfer Between a Bead Packing and Its Bounding Wall: Part I—Theory,” Transport in Porous Media 143, 397–416 (2022b).
  29. Sun, Z. and Santamarina, J. C., “Haines jumps: Pore scale mechanisms,” Physical Review E 100, 023115 (2019).
  30. Taghavi, M. and Balakotaiah, V., “Gas hold-up and bubble behavior in an upflow packed bed column in the limit of low flow rate,” AIChE Journal 65, e16624 (2019).
  31. Taghavi, M., Motil, B. J., Nahra, H.,  and Balakotaiah, V., “Gas–liquid flows through porous media in microgravity: Packed Bed Reactor Experiment‐2,” AIChE Journal 68, e17727 (2022).
  32. Talmor, E., “Two‐phase downflow through catalyst beds: Part I. Flow maps,” AIChE Journal 23, 868–874 (1977).
  33. Wooding, R. A. and Morel-Seytoux, H. J., “Multiphase Fluid Flow Through Porous Media,” Annual Review of Fluid Mechanics 8, 233–274 (1976).
  34. Xu, L., Yu, B., Wang, C., Jiang, H., Liu, Y.,  and Chen, R., “Particle-resolved CFD simulations of local bubble behaviors in a mini-packed bed with gas–liquid concurrent flow,” Chemical Engineering Science 254, 117631 (2022).
  35. Zhang, J., Teixeira, A. R., Kögl, L. T., Yang, L.,  and Jensen, K. F., “Hydrodynamics of gas-liquid flow in micropacked beds: Pressure drop, liquid holdup, and two-phase model,” AIChE Journal 63, 4694–4704 (2017).

Summary

We haven't generated a summary for this paper yet.