Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain-Adaptive Device Fingerprints for Network Access Authentication Through Multifractal Dimension Representation (2308.07925v1)

Published 15 Aug 2023 in cs.CR

Abstract: RF data-driven device fingerprinting through the use of deep learning has recently surfaced as a potential solution for automated network access authentication. Traditional approaches are commonly susceptible to the domain adaptation problem where a model trained on data from one domain performs badly when tested on data from a different domain. Some examples of a domain change include varying the device location or environment and varying the time or day of data collection. In this work, we propose using multifractal analysis and the variance fractal dimension trajectory (VFDT) as a data representation input to the deep neural network to extract device fingerprints that are domain generalizable. We analyze the effectiveness of the proposed VFDT representation in detecting device-specific signatures from hardware-impaired IQ signals, and evaluate its robustness in real-world settings, using an experimental testbed of 30 WiFi-enabled Pycom devices under different locations and at different scales. Our results show that the VFDT representation improves the scalability, robustness and generalizability of the deep learning models significantly compared to when using raw IQ data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.