Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nested Multilevel Monte Carlo with Biased and Antithetic Sampling (2308.07835v1)

Published 15 Aug 2023 in q-fin.CP, cs.NA, and math.NA

Abstract: We consider the problem of estimating a nested structure of two expectations taking the form $U_0 = E[\max{U_1(Y), \pi(Y)}]$, where $U_1(Y) = E[X\ |\ Y]$. Terms of this form arise in financial risk estimation and option pricing. When $U_1(Y)$ requires approximation, but exact samples of $X$ and $Y$ are available, an antithetic multilevel Monte Carlo (MLMC) approach has been well-studied in the literature. Under general conditions, the antithetic MLMC estimator obtains a root mean squared error $\varepsilon$ with order $\varepsilon{-2}$ cost. If, additionally, $X$ and $Y$ require approximate sampling, careful balancing of the various aspects of approximation is required to avoid a significant computational burden. Under strong convergence criteria on approximations to $X$ and $Y$, randomised multilevel Monte Carlo techniques can be used to construct unbiased Monte Carlo estimates of $U_1$, which can be paired with an antithetic MLMC estimate of $U_0$ to recover order $\varepsilon{-2}$ computational cost. In this work, we instead consider biased multilevel approximations of $U_1(Y)$, which require less strict assumptions on the approximate samples of $X$. Extensions to the method consider an approximate and antithetic sampling of $Y$. Analysis shows the resulting estimator has order $\varepsilon{-2}$ asymptotic cost under the conditions required by randomised MLMC and order $\varepsilon{-2}|\log\varepsilon|3$ cost under more general assumptions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.