Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Authorship Attribution: Stylometric Analysis on Large Language Models (2308.07305v1)

Published 14 Aug 2023 in cs.CL and cs.AI

Abstract: LLMs such as GPT-4, PaLM, and Llama have significantly propelled the generation of AI-crafted text. With rising concerns about their potential misuse, there is a pressing need for AI-generated-text forensics. Neural authorship attribution is a forensic effort, seeking to trace AI-generated text back to its originating LLM. The LLM landscape can be divided into two primary categories: proprietary and open-source. In this work, we delve into these emerging categories of LLMs, focusing on the nuances of neural authorship attribution. To enrich our understanding, we carry out an empirical analysis of LLM writing signatures, highlighting the contrasts between proprietary and open-source models, and scrutinizing variations within each group. By integrating stylometric features across lexical, syntactic, and structural aspects of language, we explore their potential to yield interpretable results and augment pre-trained LLM-based classifiers utilized in neural authorship attribution. Our findings, based on a range of state-of-the-art LLMs, provide empirical insights into neural authorship attribution, paving the way for future investigations aimed at mitigating the threats posed by AI-generated misinformation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tharindu Kumarage (21 papers)
  2. Huan Liu (283 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.