Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost fine gradings on algebras and classification of gradings up to isomorphism (2308.07230v4)

Published 14 Aug 2023 in math.RA

Abstract: We consider the problem of classifying gradings by groups on a finite-dimensional algebra $A$ (with any number of multilinear operations) over an algebraically closed field. We introduce a class of gradings, which we call almost fine, such that every $G$-grading on $A$ is obtained from an almost fine grading on $A$ in an essentially unique way, which is not the case with fine gradings. For abelian groups, we give a method of obtaining all almost fine gradings if fine gradings are known. We apply these ideas to the case of semisimple Lie algebras in characteristic $0$: to any abelian group grading with nonzero identity component, we attach a (possibly nonreduced) root system and, in the simple case, construct an adapted grading by this root system.

Summary

We haven't generated a summary for this paper yet.