Integrated correlators in $\mathcal{N}=4$ SYM beyond localisation (2308.07219v2)
Abstract: We study integrated correlators of four superconformal primaries $\mathcal{O}{p}$ with arbitrary charges $p$ in $\mathcal{N}{=}4$ super Yang-Mills theory (SYM). The $ \langle \mathcal{O}{2} \mathcal{O}{2} \mathcal{O}{p} \mathcal{O}_{p} \rangle$ integrated correlators can be computed by supersymmetric localisation, whereas correlators with more general charges are currently not accessible from this method and in general contain complicated multi-zeta values. Nevertheless we observe that if one sums over the contributions from all different channels in a given correlator, then all the multi-zeta values (and products of zeta's) cancel leaving only $\zeta(2\ell{+}1)$ at $\ell$-loops. We then propose an exact expression of such integrated correlators in the planar limit, valid for arbitrary 't Hooft coupling. The expression matches with the known exact localisation-based results for specific charges, as well as with all existing perturbative and strong-coupling results in the literature for more general charges. As an application, our result is used to determine certain $7$-loop Feynman integral periods and fix previously unknown coefficients in the correlators at strong coupling.
- S. Caron-Huot and F. Coronado, Ten dimensional symmetry of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM correlators, JHEP 03, 151, arXiv:2106.03892 [hep-th] .
- V. Goncalves, Four point function of 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 stress-tensor multiplet at strong coupling, JHEP 04, 150, arXiv:1411.1675 [hep-th] .
- L. Rastelli and X. Zhou, Mellin amplitudes for AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT, Phys. Rev. Lett. 118, 091602 (2017), arXiv:1608.06624 [hep-th] .
- L. F. Alday and A. Bissi, Loop Corrections to Supergravity on AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT, Phys. Rev. Lett. 119, 171601 (2017), arXiv:1706.02388 [hep-th] .
- J. M. Drummond, H. Paul, and M. Santagata, Bootstrapping string theory on AdS5×S5, Phys. Rev. D 108, 026020 (2023), arXiv:2004.07282 [hep-th] .
- T. Abl, P. Heslop, and A. E. Lipstein, Towards the Virasoro-Shapiro amplitude in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT, JHEP 04, 237, arXiv:2012.12091 [hep-th] .
- L. F. Alday and T. Hansen, The AdS Virasoro-Shapiro Amplitude, (2023), arXiv:2306.12786 [hep-th] .
- P. Heslop, Chapter 8: Half BPS correlators, J. Phys. A 55, 443009 (2022).
- C. Wen and S.-Q. Zhang, Integrated correlators in 𝒩𝒩\mathcal{N}caligraphic_N = 4 super Yang-Mills and periods, JHEP 05, 126, arXiv:2203.01890 [hep-th] .
- V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313, 71 (2012), arXiv:0712.2824 [hep-th] .
- N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7, 831 (2003), arXiv:hep-th/0206161 .
- See also [59, 15] and more recently [60] for exact results in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM using localisation involving a Wilson line.
- D. Dorigoni, M. B. Green, and C. Wen, Exact properties of an integrated correlator in 𝒩𝒩\mathcal{N}caligraphic_N = 4 SU(N) SYM, JHEP 05, 089, arXiv:2102.09537 [hep-th] .
- D. Dorigoni, M. B. Green, and C. Wen, Exact results for duality-covariant integrated correlators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM with general classical gauge groups, SciPost Phys. 13, 092 (2022), arXiv:2202.05784 [hep-th] .
- H. Paul, E. Perlmutter, and H. Raj, Exact Large Charge in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM and Semiclassical String Theory, (2023b), arXiv:2303.13207 [hep-th] .
- A. Brown, C. Wen, and H. Xie, Generating functions and large-charge expansion of integrated correlators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric Yang-Mills theory, JHEP 07, 129, arXiv:2303.17570 [hep-th] .
- S. Caron-Huot and A.-K. Trinh, All tree-level correlators in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT supergravity: hidden ten-dimensional conformal symmetry, JHEP 01, 196, arXiv:1809.09173 [hep-th] .
- J. L. Bourjaily, P. Heslop, and V.-V. Tran, Perturbation Theory at Eight Loops: Novel Structures and the Breakdown of Manifest Conformality in N=4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 116, 191602 (2016b), arXiv:1512.07912 [hep-th] .
- D. J. Broadhurst and D. Kreimer, Knots and numbers in Phi**4 theory to 7 loops and beyond, Int. J. Mod. Phys. C 6, 519 (1995), arXiv:hep-ph/9504352 .
- O. Schnetz, Quantum periods: A Census of phi**4-transcendentals, Commun. Num. Theor. Phys. 4, 1 (2010), arXiv:0801.2856 [hep-th] .
- F. C. S. Brown, On the periods of some Feynman integrals, (2009), arXiv:0910.0114 [math.AG] .
- O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08, 589 (2014), arXiv:1302.6445 [math.NT] .
- E. Panzer and O. Schnetz, The Galois coaction on ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT periods, Commun. Num. Theor. Phys. 11, 657 (2017), arXiv:1603.04289 [hep-th] .
- O. Schnetz, HyperlogProcedures, https://www.math.fau.de/person/oliver-schnetz/.
- E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188, 148 (2015), arXiv:1403.3385 [hep-th] .
- M. Borinsky, Tropical Monte Carlo quadrature for Feynman integrals, 10.4171/AIHPD/158 (2020), arXiv:2008.12310 [math-ph] .
- V. V. Belokurov and N. I. Usyukina, CALCULATION OF LADDER DIAGRAMS IN ARBITRARY ORDER, J. Phys. A 16, 2811 (1983).
- J. G. Russo, A Note on perturbation series in supersymmetric gauge theories, JHEP 06, 038, arXiv:1203.5061 [hep-th] .
- Y. Hatsuda and K. Okuyama, Resummations and Non-Perturbative Corrections, JHEP 09, 051, arXiv:1505.07460 [hep-th] .
- S. M. Chester and S. S. Pufu, Far beyond the planar limit in strongly-coupled 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM, JHEP 01, 103, arXiv:2003.08412 [hep-th] .
- D. Dorigoni, An Introduction to Resurgence, Trans-Series and Alien Calculus, Annals Phys. 409, 167914 (2019), arXiv:1411.3585 [hep-th] .
- Y. Hatsuda and K. Okuyama, Large N expansion of an integrated correlator in 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM, JHEP 11, 086, arXiv:2208.01891 [hep-th] .
- C. Montonen and D. I. Olive, Magnetic Monopoles as Gauge Particles?, Phys. Lett. B 72, 117 (1977).
- P. Goddard, J. Nuyts, and D. I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125, 1 (1977).
- C. Luo and Y. Wang, Casimir energy and modularity in higher-dimensional conformal field theories, JHEP 07, 028, arXiv:2212.14866 [hep-th] .
- There is one additional loop compared to the correlator because of the integration over the external points.
- F. Coronado, Perturbative four-point functions in planar 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM from hexagonalization, JHEP 01, 056, arXiv:1811.00467 [hep-th] .
- F. Coronado, Bootstrapping the Simplest Correlator in Planar 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Supersymmetric Yang-Mills Theory to All Loops, Phys. Rev. Lett. 124, 171601 (2020), arXiv:1811.03282 [hep-th] .
- A. V. Belitsky and G. P. Korchemsky, Crossing bridges with strong Szegő limit theorem, JHEP 04, 257, arXiv:2006.01831 [hep-th] .
- D. Dorigoni, M. B. Green, and C. Wen, Novel Representation of an Integrated Correlator in 𝒩𝒩\mathcal{N}caligraphic_N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 126, 161601 (2021b), arXiv:2102.08305 [hep-th] .
- A. Brown, C. Wen, and H. Xie, Laplace-difference equation for integrated correlators of operators with general charges in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM, JHEP 06, 066, arXiv:2303.13195 [hep-th] .
- N. Drukker and D. J. Gross, An Exact prediction of N=4 SUSYM theory for string theory, J. Math. Phys. 42, 2896 (2001), arXiv:hep-th/0010274 .