Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expanding bipartite Bell inequalities for maximum multi-partite randomness (2308.07030v2)

Published 14 Aug 2023 in quant-ph

Abstract: Nonlocal tests on multi-partite quantum correlations form the basis of protocols that certify randomness in a device-independent (DI) way. Such correlations admit a rich structure, making the task of choosing an appropriate test difficult. For example, extremal Bell inequalities are tight witnesses of nonlocality, but achieving their maximum violation places constraints on the underlying quantum system, which can reduce the rate of randomness generation. As a result there is often a trade-off between maximum randomness and the amount of violation of a given Bell inequality. Here, we explore this trade-off for more than two parties. More precisely, we study the maximum amount of randomness that can be certified by correlations exhibiting a violation of the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality. We find that maximum quantum violation and maximum randomness are incompatible for any even number of parties, with incompatibility diminishing as the number of parties grows, and conjecture the precise trade-off. We also show that maximum MABK violation is not necessary for maximum randomness for odd numbers of parties. To obtain our results, we derive new families of Bell inequalities certifying maximum randomness from a technique for randomness certification, which we call ``expanding Bell inequalities''. Our technique allows a bipartite Bell expression to be used as a seed, and transformed into a multi-partite Bell inequality tailored for randomness certification, showing how intuition learned in the bipartite case can find use in more complex scenarios.

Citations (1)

Summary

We haven't generated a summary for this paper yet.