Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance from High-Quality Isotropic Volumes (2308.06762v2)

Published 13 Aug 2023 in eess.IV and cs.CV

Abstract: Accurate tissue segmentation of thick-slice fetal brain magnetic resonance (MR) scans is crucial for both reconstruction of isotropic brain MR volumes and the quantification of fetal brain development. However, this task is challenging due to the use of thick-slice scans in clinically-acquired fetal brain data. To address this issue, we propose to leverage high-quality isotropic fetal brain MR volumes (and also their corresponding annotations) as guidance for segmentation of thick-slice scans. Due to existence of significant domain gap between high-quality isotropic volume (i.e., source data) and thick-slice scans (i.e., target data), we employ a domain adaptation technique to achieve the associated knowledge transfer (from high-quality <source> volumes to thick-slice <target> scans). Specifically, we first register the available high-quality isotropic fetal brain MR volumes across different gestational weeks to construct longitudinally-complete source data. To capture domain-invariant information, we then perform Fourier decomposition to extract image content and style codes. Finally, we propose a novel Cycle-Consistent Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge learned from high-quality isotropic volumes for accurate tissue segmentation of thick-slice scans. Our C2DA-Net can fully utilize a small set of annotated isotropic volumes to guide tissue segmentation on unannotated thick-slice scans. Extensive experiments on a large-scale dataset of 372 clinically acquired thick-slice MR scans demonstrate that our C2DA-Net achieves much better performance than cutting-edge methods quantitatively and qualitatively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. R. P. Jokhi and E. H. Whitby, “Magnetic resonance imaging of the fetus,” Developmental Medicine & Child Neurology, vol. 53, no. 1, pp. 18–28, 2011.
  2. A. Gholipour, C. K. Rollins, C. Velasco-Annis, A. Ouaalam, A. Akhondi-Asl, O. Afacan, C. M. Ortinau, S. Clancy, C. Limperopoulos, E. Yang et al., “A normative spatiotemporal mri atlas of the fetal brain for automatic segmentation and analysis of early brain growth,” Scientific reports, vol. 7, no. 1, pp. 1–13, 2017.
  3. M. Kuklisova-Murgasova, G. Quaghebeur, M. A. Rutherford, J. V. Hajnal, and J. A. Schnabel, “Reconstruction of fetal brain mri with intensity matching and complete outlier removal,” Medical image analysis, vol. 16, no. 8, pp. 1550–1564, 2012.
  4. X. Zhang, Z. Cui, C. Chen, J. Wei, J. Lou, W. Hu, H. Zhang, T. Zhou, F. Shi, and D. Shen, “Confidence-aware cascaded network for fetal brain segmentation on mr images,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2021, pp. 584–593.
  5. P. de Dumast, H. Kebiri, K. Payette, A. Jakab, H. Lajous, and M. B. Cuadra, “Synthetic magnetic resonance images for domain adaptation: Application to fetal brain tissue segmentation,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2022, pp. 1–5.
  6. K. Payette, H. Li, P. de Dumast, R. Licandro, H. Ji, M. M. R. Siddiquee, D. Xu, A. Myronenko, H. Liu, Y. Pei et al., “Fetal brain tissue annotation and segmentation challenge results,” arXiv preprint arXiv:2204.09573, 2022.
  7. L. Li, Q. Ma, M. Sinclair, A. Makropoulos, J. Hajnal, A. D. Edwards, B. Kainz, D. Rueckert, and A. Alansary, “Cas-net: Conditional atlas generation and brain segmentation for fetal mri,” arXiv preprint arXiv:2205.08239, 2022.
  8. Z. Cui, C. Li, Z. Du, N. Chen, G. Wei, R. Chen, L. Yang, D. Shen, and W. Wang, “Structure-driven unsupervised domain adaptation for cross-modality cardiac segmentation,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3604–3616, 2021.
  9. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural networks,” The journal of machine learning research, vol. 17, no. 1, pp. 2096–2030, 2016.
  10. K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsupervised pixel-level domain adaptation with generative adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 3722–3731.
  11. J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell, “Cycada: Cycle-consistent adversarial domain adaptation,” in International conference on machine learning.   PMLR, 2018, pp. 1989–1998.
  12. Y. Yang and S. Soatto, “Fda: Fourier domain adaptation for semantic segmentation,” in CVPR, 2020, pp. 4085–4095.
  13. Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chandraker, “Learning to adapt structured output space for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7472–7481.
  14. T. Miller, “Simplified neural unsupervised domain adaptation,” in Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting, vol. 2019.   NIH Public Access, 2019, p. 414.
  15. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in ICCV, 2017, pp. 2223–2232.
  16. J. Yang, W. An, S. Wang, X. Zhu, C. Yan, and J. Huang, “Label-driven reconstruction for domain adaptation in semantic segmentation,” in European conference on computer vision.   Springer, 2020, pp. 480–498.
  17. Y. Yang, D. Lao, G. Sundaramoorthi, and S. Soatto, “Phase consistent ecological domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9011–9020.
  18. F. Wu and X. Zhuang, “Unsupervised domain adaptation with variational approximation for cardiac segmentation,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3555–3567, 2021.
  19. C. Chen, Q. Dou, H. Chen, J. Qin, and P. A. Heng, “Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation,” IEEE transactions on medical imaging, vol. 39, no. 7, pp. 2494–2505, 2020.
  20. H. Pham, Z. Dai, Q. Xie, and Q. V. Le, “Meta pseudo labels,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11 557–11 568.
  21. C. Pei, F. Wu, L. Huang, and X. Zhuang, “Disentangle domain features for cross-modality cardiac image segmentation,” Medical Image Analysis, vol. 71, p. 102078, 2021.
  22. B. B. Avants, N. Tustison, G. Song et al., “Advanced normalization tools (ants),” Insight j, vol. 2, no. 365, pp. 1–35, 2009.
  23. M. Frigo and S. G. Johnson, “Fftw: An adaptive software architecture for the fft,” in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), vol. 3.   IEEE, 1998, pp. 1381–1384.
  24. K. Lis, K. Nakka, P. Fua, and M. Salzmann, “Detecting the unexpected via image resynthesis,” in ICCV, 2019, pp. 2152–2161.
  25. J. Xia, F. Wang, O. M. Benkarim, G. Sanroma, G. Piella, M. A. Gonzalez Ballester, N. Hahner, E. Eixarch, C. Zhang, D. Shen et al., “Fetal cortical surface atlas parcellation based on growth patterns,” Human brain mapping, vol. 40, no. 13, pp. 3881–3899, 2019.
  26. P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, “User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability,” Neuroimage, vol. 31, no. 3, pp. 1116–1128, 2006.
  27. Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P.-A. Heng, “3d deeply supervised network for automated segmentation of volumetric medical images,” Medical image analysis, vol. 41, pp. 40–54, 2017.
  28. R. A. Bethlehem, J. Seidlitz, S. R. White, J. W. Vogel, K. M. Anderson, C. Adamson, S. Adler, G. S. Alexopoulos, E. Anagnostou, A. Areces-Gonzalez et al., “Brain charts for the human lifespan,” Nature, vol. 604, no. 7906, pp. 525–533, 2022.
  29. S. Tourbier, X. Bresson, P. Hagmann, J.-P. Thiran, R. Meuli, and M. B. Cuadra, “An efficient total variation algorithm for super-resolution in fetal brain mri with adaptive regularization,” NeuroImage, vol. 118, pp. 584–597, 2015.

Summary

We haven't generated a summary for this paper yet.