Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Phase-Field Method for Structural Topology Optimization (2308.06756v2)

Published 13 Aug 2023 in math.OC, cs.NA, and math.NA

Abstract: In this work, we develop an adaptive algorithm for the efficient numerical solution of the minimum compliance problem in topology optimization. The algorithm employs the phase field approximation and continuous density field. The adaptive procedure is driven by two residual type a posteriori error estimators, one for the state variable and the other for the first-order optimality condition of the objective functional. The adaptive algorithm is provably convergent in the sense that the sequence of numerical approximations generated by the adaptive algorithm contains a subsequence convergent to a solution of the continuous first-order optimality system. We provide several numerical simulations to show the distinct features of the algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley-Interscience, John Wiley & Sons, New York, 2000.
  2. Estimator reduction and convergence of adaptive BEM. Appl. Num. Math., 62:787–801, 2012.
  3. M. P. Bendsøe. Optimal shape design as a material distribution problem. Struct. Opt., 1(4):193–202, 1989.
  4. M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Engrg., 71(2):197–224, 1988.
  5. M. P. Bendsøe and O. Sigmund. Material interpolation schemes in topology optimization. Arch. Appl. Mech., 69(9–10):635–645, 1999.
  6. M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and Applications. Springer-Verlag, Berlin, 2003.
  7. Sharp interface limit for a phase field model in structural optimization. SIAM J. Control Optim., 54(3):1558–1584, 2016.
  8. B. Bourdin and A. Chambolle. Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var., 9:19–48, 2003.
  9. B. Bourdin and A. Chambolle. The phase-field method in optimal design. In M. P. Bendsøe, N. Olhoff, and O. Sigmund, editors, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, pages 207–215. Springer, Berlin, 2006.
  10. D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory. Cambridge University Press, Cambridge, third edition, 2007.
  11. The Mathematical Theory of Finite Element Methods. Springer, New York, third edition, 2008.
  12. M. Bruggi and M. Verani. A fully adaptive topology optimization algorithm with goal-oriented error control. Comput. Struct., 89(15–16):1481–1493, 2011.
  13. M. Burger and R. Stainko. Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim., 45(4):1447–1466, 2006.
  14. J. Cahn and J. Hilliard. Free energy of a non-uniform system i–interfacial free energy. J. Chem. Phys., 28(2):258–267, 1958.
  15. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA, 2002.
  16. P. G. Ciarlet. Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia, PA, 2013.
  17. J. C. A. Costa Jr and M. K. Alves. Layout optimization with hℎhitalic_h–adaptivity of structures. Int. J. Numer. Method Eng., 58(1):83–102, 2003.
  18. Topology optimization with adaptive mesh refinement. In J. F. Abel and J. R. Cooke, editors, Proceedings of the Sixth International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008: Spanning Nano to Mega, Ithaca, NY, USA, 2008.
  19. M. A. S. de Troya and D. A. Tortorelli. Adaptive mesh refinement in stress-constrained topology optimization. Struct. Multidisc. Optim., 58(6):2369–2386, 2018.
  20. Isogeometric analysis for topology optimization with a phase field model. Arch. Comput. Methods Eng., 19(3):427–465, 2012.
  21. A. Díaz and O. Sigmund. Checkerboard patterns in layout optimization. Struct. Optim., 10(1):40–45, 1995.
  22. H. A. Eschenauer and N. Olhoff. Topology optimization of continuum structures: A review. Appl. Mech. Rev., 54(4):331–390, 2001.
  23. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL, revised edition, 2015.
  24. C. Fleury. CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct. Optim., 1(2):81––89, 1989.
  25. Phase field topology optimisation for 4D printing. ESAIM Control Optim. Calc. Var., 29:24, 46pp, 2023.
  26. B.-Q. Guo and I. Babuška. On the regularity of elasticity problems with piecewise analytic data. Adv. in Appl. Math., 14(3):307–347, 1993.
  27. Accelerating a phase field method by linearization for eigenfrequency topology optimization. Struct. Multidisc. Optim., 66:242, 17 pp., 2023.
  28. K. Ito and B. Jin. Inverse Problems: Tikhonov Theory and Algorithms. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
  29. K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia, PA, 2008.
  30. B. Jin and Y. Xu. Adaptive reconstruction for electrical impedance tomography with a piecewise constant conductivity. Inverse Problems, 36(1):014003, 28pp, 2020.
  31. A. B. Lambe and A. Czekanski. Topology optimization using a continuous density field and adaptive mesh refinement. Int. J. Numer. Methods Eng., 113(3):357–373, 2018.
  32. B. S. Lazarov and O. Sigmund. Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng., 86(6):765–781, 2011.
  33. F. Li and J. Yang. A provably efficient monotonic-decreasing algorithm for shape optimization in stokes flows by phase-field approaches. Comput. Methods Appl. Mech. Engrg., 398:115195, 2022.
  34. L. Modica. The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal., 98(2):123–142, 1987.
  35. L. Modica and S. Mortola. Il limite nella ΓΓ\Gammaroman_Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5), 14(3):526–529, 1977.
  36. L. Modica and S. Mortola. Un esempio di Γ−superscriptΓ\Gamma^{-}roman_Γ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT-convergenza. Boll. Un. Mat. Ital. B (5), 14(1):285–299, 1977.
  37. Theory of adaptive finite element methods: an introduction. In Multiscale, Nonlinear and Adaptive Approximation, pages 409–542. Springer, Berlin, 2009.
  38. A. A. Novotny and J. Sokołowski. Topological Derivatives in Shape Optimization. Springer, Heidelberg, 2013.
  39. P. I. Plotnikov and J. Sokolowski. Geometric aspects of shape optimization. J. Geom. Anal., 33(7):206, 57pp, 2023.
  40. A phase field method based on multi-level correction for eigenvalue topology optimization. Comput. Methods Appl. Mech. Engrg., 401:115646, 2022.
  41. G. I. N. Rozvany. A critical review of established methods of structural topology optimization. Struct. Multidisc. Optim., 37(3):217–237, 2009.
  42. L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.
  43. O. Sigmund and J. Petersson. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim, 16(1):68–75, 1998.
  44. R. Stainko. An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun. Numer. Methods Eng., 22(2):109–118, 2006.
  45. M. Stolpe and K. Svanberg. An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidisc. Optim., 22(2):116–126, 2001.
  46. K. Svanberg. Method of moving asymptotes –- a new method for structural optimization. Int. J. Numer. Meth. Eng., 24(3):359–373, 1987.
  47. Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys., 229(7):2697–2718, 2010.
  48. R. Tavakoli. Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method. Comput. Methods Appl. Mech. Engrg., 276:534–565, 2014.
  49. R. Verfürth. A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford, 2013.
  50. M. Wallin and M. Ristinmaa. Howard’s algorithm in a phase-field topology optimization approach. Internat. J. Numer. Methods Eng., 94(1):43–59, 2013.
  51. M. Wallin and M. Ristinmaa. Boundary effects in a phase-field approach to topology optimization. Comput. Methods Appl. Mech. Engrg., 278:145–159, 2014.
  52. M. Y. Wang and S. Zhou. Phase field: a variational method for structural topology optimization. Comput. Model. Eng. Sci., 6(6):227–246, 2004.
  53. M. Zhou and G. I. N. Rozvany. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Engrg., 89(1–3):309–336, 1991.
  54. S. Zhou and M. Y. Wang. Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct. Multidisc. Optim., 33(2):89–111, 2007.
Citations (3)

Summary

We haven't generated a summary for this paper yet.